
Spatial Deep Networks for Outdoor

Scene Classification

Cong Dong

B. Eng. (Honours)
Australian National University

July 2015

A thesis submitted for the degree of Master of Philosophy

at The Australian National University

Conclusion

While far from perfect, the Convention

codifies fundamental principles and

establishes mechanisms needed to

adapt management of international

rivers to climate change.

Governing international watercourses
in an era of climate change:

Dr Jamie Pittock
Crawford School of Economics & Government

The Australian National University
Canberra, ACT 0200, Australia

jamie.pittock@anu.edu.au

Ms Flavia Loures
World Wildlife Fund

Washington, DC
United States of America
flavia.loures@wwfus.org

References:
Loures, F., Rieu-Clarke, A., & Vercambre, M. (2008). Everything you
need to know about the UN Watercourses Convention. Gland,
Switzerland: WWF International.
Pittock, J., Loures, F., & Patterson, M. (submitted). Governing
transboundary rivers in an era of climate change. In: The UN
Watercourses Convention in force: Strengthening international
law for transboundary water management.

Dam on the Mekong River in China © U. Collier. Dam
developments would be governed by the Convention

Assessment of the extent to which the Convention’s provisions may facilitate
adaptive management of international watercourses with climate change.

Assessing the UN Watercourses Convention

Climate change will alter the stationary hydrology
that underpins the many existing international
river agreements.

In our research, ten principles are identified for
adaptive management of shared rivers.

Assessing the Convention, it has effective
provisions for subsidiarity, equitable use, no
harm, dispute settlement, information and
communication.

The Convention is silent on funding, conjunctive
management with groundwater and revision of
its provisions.

Further institutional reforms are needed to
enhance the Convention’s governance.

Waters shared between nations
There are 276 rivers are shared between two or more countries.

Shared river basins contain 60% of surface water flow, 50% of
the land surface and 40% of the world’s population.

These shared waters generate critical ecosystem services for
humanity but are degrading.

Climate change will greatly exacerbate existing risks to
water security.

Many institutions exist for the management of transboundary
waters at different scales.

However, only 40% of shared rivers are managed under treaties
and 80% of agreements involve only two nations rather than all
basin states.

Importantly, most treaties lack vital mechanisms required for
effective adaptive management.

UN Watercourses Convention
The Convention on the Law of the Non-Navigational Uses of

International Watercourses (New York, 1997) – “the
Convention” - codifies common measures for cooperative
management of shared waters.

Primarily the Convention provides for equitable use balanced by
an obligation for states to do no significant harm.

After 37 years of negotiations the Convention was adopted in a
UN General Assembly vote: 106 in favour, 57 absent or
abstained, 3 against.

As at March 2012 there are ratifications from 24 nations plus
pledges from Denmark and Luxembourg.

Only 9 more ratifications are required for the Convention’s entry
into force.

Cooperative management of shared waters

Can the Convention aid climate change adaptation?

Computer Vision Group
Research School of Engineering

College of Engineering and Computer Science
The Australian National University

Declaration

The contents of this thesis are the results of original research and have not been

submitted for a higher degree to any other university or institution.

The research work presented in this dissertation is my own and it is supervised by

Dr. Jose M. Alvarez.

Cong Dong

College of Engineering and Computer Science,

The Australian National University,

Canberra,

ACT 2601,

Australia.

i

Acknowledgements

I would like to express the deepest gratitude to my supervisor Dr. Jose M. Al-

varez for his continuous support, understanding and encouragement throughout

my MPhil study and related research. His guidance helped me in all the time of

research and writing of this thesis. Without his patience and opportune counsel,

the work presented in this thesis would have been a frustrating pursuit.

My sincere thanks also go to Prof. Andrew Y. Ng for his free online resources

regarding Unsupervised Feature Learning and Deep Learning tutorials and Ma-

chine Learning courses which provide me significant opportunities to learn essential

knowledge about various deep learning techniques. Without the precious support

from these resources, it would not be possible to conduct this research.

I would also like to thank the Computer Vision Discussion Group in ANU

which gives me opportunities to discuss with other computer vision researchers

and students. Their insightful ideas were valued greatly.

Last but not the least, I would like to thank my parents and girl friend for their

unconditional love, spiritual support and continuous encouragement throughout

my study and my life in general.

ii

Abstract

Scene classification has become an increasingly popular topic in computer vision.

The techniques for scene classification can be widely used in many other aspects,

such as detection, action recognition, and content-based image retrieval. Recently,

the stationary property of images has been leveraged in conjunction with convo-

lutional networks to perform classification tasks. In the existing approach, one

random patch is extracted from each training image to learn filters for convolu-

tional processes. However, feature learning only from one random patch per image

is not robust because patches selected from di↵erent areas of an image may con-

tain distinct scene objects which make the features of these patches have di↵erent

descriptive power. In this dissertation, focusing on deep learning techniques, we

propose a multi-scale network that utilizes multiple random patches and di↵erent

patch dimensions to learn feature representations for images in order to improve

the existing approach.

Despite the much better performance the multi-scale network can achieve than

the existing approach, lacking of local features and the spatial layout is one of

the core limitations of both methods. Therefore, we propose a novel Spatial Deep

Network (SDN) to further enhance the existing approach by exploiting the spatial

layout of the image and constraining the random patch extraction to be performed

in di↵erent areas of the image so as to e↵ectively restrict the patches to hold the

necessary characteristics of di↵erent image areas. In this way, SDN yields compact

but discriminative features that incorporate both global descriptors and the local

spatial information for images. Experiment results show that SDN considerably

exceeds the existing approach and multi-scale networks and achieves competitive

performance with some widely used classification techniques on the OT dataset

(developed by Oliva and Torralba). In order to evaluate the robustness of the

proposed SDN, we also apply it to the content-based image retrieval on the Holidays

dataset, where our features attain much better retrieval performance but have much

lower feature dimensions compared to other state-of-the-art feature descriptors.

iii

List of Acronyms

AE Auto-Encoders

AI Artificial Intelligence

BFGS Broyden-Fletcher-Goldfarb-Shanno

BoF Bag-of-Features

BP Back-propagation

CNN Convolutional Neural Networks

DBN Deep Belief Networks

FK Fisher Kernel

FV Fisher Vector

KNN K-Nearest Neighbors

L-BFGS Limited-memory BFGS

NN Neural Networks

PCA Principal Component Analysis

RBM Restricted Boltzmann Machines

ReLU Rectified Linear Units

SAE Stacked Auto-Encoder

SGD Stochastic Gradient Descent

SH Spectral Hashing

SIFT Scale-Invariant Feature Transform

SP Spatial Pyramid

SVM Support Vector Machines

VLAD Vector of Locally Aggregated Descriptors

iv

Notations and Symbols

� weight decay term

✓ parameter set

W weight matrix

b bias term

L

n

n-th layer

J overall cost

� error term

⇤ 2D convolution operation

⌃ covariance matrix

U eigenvector matrix

I identity matrix

� (·) activation function

d (·) absolute distance

1 {·} indicator function

v

Contents

Declaration i

Acknowledgements ii

Abstract iii

List of Acronyms iv

Notations and Symbols v

1 Introduction 1

1.1 Scene Classification . 3

1.2 Deep Learning . 6

1.3 Motivation . 7

1.4 Main Contributions . 9

1.5 Outline . 10

2 Background for Feature Learning and Scene Classification 11

2.1 Auto-Encoders . 11

2.1.1 Framework of Auto-Encoders 12

2.1.2 Feedforward Pass . 13

2.1.3 Back-propagation . 14

2.1.4 Optimization Algorithms . 17

2.2 Classifiers . 18

2.2.1 Softmax . 18

2.2.2 K-Nearest Neighbors . 20

2.2.3 Support Vector Machines . 22

2.3 Stacked Auto-Encoders and Greedy Layer-wise Training 26

2.4 Convolutional Neural Networks . 28

2.4.1 Feedforward Pass . 29

2.4.2 Back-propagation . 32

vi

Contents vii

2.5 Other Related Techniques . 34

2.5.1 Principal Component Analysis 34

2.5.2 Whitening . 35

3 Multi-scale Networks for Scene Classification 37

3.1 Applied Techniques . 37

3.2 Datasets . 40

3.3 Experiment Settings . 42

3.4 Experiments and Results Analysis 44

3.4.1 Experiments with Auto-Encoders 44

3.4.2 Experiments with Stacked Auto-Encoders 49

3.4.3 Experiments with Convolutional Neural Networks 49

3.4.4 Experiments with Baseline Approach 50

3.4.5 Comparison among Feature Learning Techniques 50

3.4.6 Experiments with Proposed Multi-scale Networks 51

3.5 Conclusions . 55

4 Spatial Deep Networks for Feature Learning 56

4.1 Spatial Deep Networks . 57

4.2 Experiment settings . 60

4.3 Experiments for Classification . 60

4.3.1 One/two-level SDN with One Convolutional Layer 60

4.3.2 One/two-level SDN with Three Convolutional Layers 62

4.3.3 Comparison between Feature Combination Strategies 63

4.3.4 Comparison with Other Methods 64

4.4 Experiments for Image Retrieval . 65

4.5 Conclusions . 66

5 Conclusions and Future Work 68

5.1 Conclusions . 68

5.2 Future Work . 69

Bibliography 71

List of Figures

1.1 Challenges of scene recognition are: (a) illumination changes, (b)

scale variations, (c) intra-class variability, and (d) inter-class simi-

larities (in (d), the class of left image is ‘insidecity’, class of the right

image is ‘street’). 2

1.2 Three-level Spatial Pyramid toy example: There are three feature

types: circles, diamonds, and crosses. Initially, partition image into

three di↵erent level of resolution. Then, count the features found at

each level of resolution. Finally, compute the final spatial histogram. 4

1.3 Convolutional Neural Network (CNN) structure of LeNet-5 used for

digits recognition. Each plane in the structure is a feature map

whose weights are constrained to be identical. 8

2.1 An example of 1-hidden-layer Auto-Encoder network. 12

2.2 Plots of sigmoid function and tanh function. 14

2.3 Sample plot of K-Nearest Neighbors criteria where k = 4 and the

training examples have two di↵erent labels, ‘Class A’ and ‘Class B’. 21

2.4 An example of linear separating hyperplane for the separable case in

2-dimensional space. The maximum margin distance is shown. The

support vectors are those dots and circles, which define the margin

of maximum separation between two classes. 24

2.5 Kernel machines used to compute a non-linearly separable function

into a higher dimension linearly separable function. 26

2.6 An example of convolutional layer. 30

3.1 Structure and feature learning procedures of proposed multi-scale

networks. 39

3.2 Sample images from the OT dataset. 41

3.3 Sample images from the Holidays dataset. 42

3.4 An example of original image and its Gaussian Blurred image. . . . 46

3.5 PCA plots for 50D and 200D features: Variance VS. Components. . 48

viii

List of Figures ix

3.6 Overall cost VS. Optimization iterations. 49

4.1 Structure and feature learning pipeline through the proposed two-

level Spatial Deep Network. The input image is continually parti-

tioned into 9 sub-regions and one random patch is extracted from

each to learn filters. Following the filter learning, convolution and

pooling are performed to generate features. After obtaining features

from di↵erent level of partitions, the global and local features are

concatenated and fed to a stacked auto-encoder to learn final com-

pact feature representations. 57

4.2 Example of feature learning through a two-level SDN. 59

List of Tables

3.1 Accuracy of di↵erent scale reduction methods and image sizes. . . . 45

3.2 Accuracy of di↵erent distance metrics and AE structures. 47

3.3 Accuracy of di↵erent voting criteria and AE structures. 47

3.4 Comparison among AE, SAE, CNN, and baseline approach. 51

3.5 Results of di↵erent classification methods. 52

3.6 Results of di↵erent structures of SAE for dimension reduction. . . . 52

3.7 Results of di↵erent number of patches per training image. 53

3.8 Accuracy of di↵erent image sizes and patch sizes. 53

3.9 Results of less number of kernels and combined features. 54

3.10 Comparison between other techniques and proposed methods. . . . 55

4.1 Results of SDN with one convolutional layer. 62

4.2 Results of SDN with three convolutional layers. 63

4.3 Comparison of feature combination strategies. 64

4.4 Comparison with state-of-the-art techniques. 64

4.5 Comparison of features with the same dimension. 65

4.6 Comparison with state-of-the-art techniques. 66

x

Chapter 1

Introduction

Scene classification has become an increasingly popular topic in computer vision,

which aims to categorize each test image and assign them to one of several scene

types (mountain, forest, coast, city, etc.). E↵ective solutions to scene classification

can be widely used in many other aspects, such as detection, action recognition,

and content-based image retrieval. According to [1], scene classification is one of

the most appealing yet challenging topics due to the high ambiguity and variability

shown in the content of scene images, especially when images are in highly diverse.

The challenges behind can be summarized as illumination changes and scale vari-

ations, and also intra-class variabilities and inter-class similarities [2]. Figure 1.1

shows image examples of these challenges from the OT dataset (a scene dataset

developed by Oliva and Torralba [3]). Therefore, learning good feature representa-

tions for scene images is crucial for scene classification tasks.

In the past decades, machine learning has experienced an extraordinary ex-

pansion and obtained an unprecedented popularity in many areas, including scene

classification [4]. It is to build computer programs that are able to generate new

knowledge or to improve knowledge already processed by using input informa-

tion. However, the choice of data representation employed has significant influ-

ences on the performance of many machine learning methods. For this reason, the

intelligence behind the machine learning algorithms has shifted to designing ef-

fective preprocessing pipelines and human-engineered feature extraction strategies

to support certain machine learning tasks. Although such feature engineering is

important, it can be challenging since it is labour-intensive and highly application-

dependent [5, 6].

In order to expand the scope and ease of applicability of machine learning, it

is highly desirable to make learning algorithms less dependent on the feature engi-

neering [5]. Deep learning, a subfield of machine learning, was kick-started in the

1

2

(a) (b)

(c) (d)

Figure 1.1: Challenges of scene recognition are: (a) illumination changes, (b) scale
variations, (c) intra-class variability, and (d) inter-class similarities (in (d), the class
of left image is ‘insidecity’, class of the right image is ‘street’).

year of 2006 by a few research groups, especially Geo↵ Hinton’s group who initially

introduced Deep Belief Networks (DBNs) [7]. DBNs are a kind of deep networks

that focus on stacking unsupervised feature learning algorithms to generate deeper

representations for input data. Deep learning was proposed in order to move ma-

chine learning systems towards automatically discovering multiple-level informa-

tion representations which contain higher-level features to represent more abstract

concepts of information [5]. Since 2006, deep learning has seen rapid growth and

has been applied with significant success in many traditional Artificial Intelligence

(AI) applications, such as classification tasks [8,9], regression tasks [10], dimension

reduction [11], object segmentation [12], information retrieval [13], robotics [14],

natural language processing [15,16], etc.

In this dissertation, focusing on deep learning techniques, particularly the auto-

encoders and convolutional networks which will be introduced in detail in the next

chapter, we propose a novel Spatial Deep Network (SDN) to learn compact but dis-

criminative feature representations for outdoor scene classification. By exploiting

the spatial layout based on the stationary property of images, the learned features

through proposed SDN can incorporate both global descriptors and local spatial

information for scene images.

1.1 Scene Classification 3

1.1 Scene Classification

Despite the challenges behind scene classification, it is claimed that the human

observer can deal with a number of visual tasks, like scene classification, with only

around 100ms. This performance is attributed to the ability of a human to fast

extraction the ‘gist’ of scenes without needing to perceive the object appeared in

the scene [17]. Additionally, according to [18], a good feature representation for

recognition tasks, such as scene classification, should have three properties:

• The capacity to achieve good performance for recognition tasks.

• Computational e�ciency during generating the representations.

• Low demand on memory usage of representations.

To learn good feature representations and achieve scene classification with

human-level performance, researchers have been making great e↵orts over the years.

Some methods for scene classification follow the paradigm of describing images with

a set of low-level attributes, such as color, texture, shape, and layout [19]. In spite

of good performance these approaches can achieve, they lack intermediate image

representations (such as the presence of sky, road, building, or other semantic con-

cepts), which can be significantly valuable when doing scene classification.

In order to take advantage of intermediate representations, Bag-of-Features

(BoF) proposed in [20] is one of the most popular and e↵ective approaches to model

scenes, which is to quantize invariant local features into a set of visual words. The

process can be summarized as follows:

- Local Features: To represent the image, descriptors are extracted based on

the interest-point detector technique [21]. Among di↵erent kinds of descrip-

tors, SIFT (Scale-Invariant Feature Transform) proposed by [22] is one of the

most commonly applied methods, which has the property to be invariant to

rotations, scales, translations and small distortions of the original image.

- Codebook Representation: The other essential aspect of BoF is the codebook

representation [23]. The idea of the codebook is to cluster feature descriptors

of all patches (e.g. SIFT patches), where the cluster number is pre-defined

and each cluster denotes a visual word used to form the codebook [24]. After

obtaining the codebook, the BoF frequency histograms of visual vocabularies

are computed and used to measure similarities among di↵erent images [25].

To perform classification tasks based on BoF histograms, the Support Vector

1.1 Scene Classification 4

get the following definition of a pyramid match kernel:

�L(X,Y) = IL +
L�1X

�=0

1

2L��

�
I� � I�+1

�
(2)

=
1

2L
I0 +

LX

�=1

1

2L��+1
I� . (3)

Both the histogram intersection and the pyramid match ker-
nel are Mercer kernels [7].

3.2. Spatial Matching Scheme

As introduced in [7], a pyramid match kernel works
with an orderless image representation. It allows for pre-
cise matching of two collections of features in a high-
dimensional appearance space, but discards all spatial in-
formation. This paper advocates an “orthogonal” approach:
perform pyramid matching in the two-dimensional image
space, and use traditional clustering techniques in feature
space.1 Specifically, we quantize all feature vectors into M
discrete types, and make the simplifying assumption that
only features of the same type can be matched to one an-
other. Each channel m gives us two sets of two-dimensional
vectors, Xm and Ym, representing the coordinates of fea-
tures of type m found in the respective images. The final
kernel is then the sum of the separate channel kernels:

KL(X,Y) =
MX

m=1

�L(Xm, Ym) . (4)

This approach has the advantage of maintaining continuity
with the popular “visual vocabulary” paradigm — in fact, it
reduces to a standard bag of features when L = 0.

Because the pyramid match kernel (3) is simply a
weighted sum of histogram intersections, and because
c min(a, b) = min(ca, cb) for positive numbers, we can
implement KL as a single histogram intersection of “long”
vectors formed by concatenating the appropriately weighted
histograms of all channels at all resolutions (Fig. 1). For
L levels and M channels, the resulting vector has dimen-
sionality M

PL
�=0 4� = M 1

3 (4L+1 � 1). Several experi-
ments reported in Section 5 use the settings of M = 400
and L = 3, resulting in 34000-dimensional histogram in-
tersections. However, these operations are efficient because
the histogram vectors are extremely sparse (in fact, just as
in [7], the computational complexity of the kernel is linear
in the number of features). It must also be noted that we did
not observe any significant increase in performance beyond
M = 200 and L = 2, where the concatenated histograms
are only 4200-dimensional.

1In principle, it is possible to integrate geometric information directly
into the original pyramid matching framework by treating image coordi-
nates as two extra dimensions in the feature space.

+

+

++

+

+

+ + +

+

+

++

+

++

+

+

+ + +

+

+

++

+

++

+

+

+ + +

+

+

+

level 2level 1level 0

! 1/4 ! 1/4 ! 1/2

++ +

Figure 1. Toy example of constructing a three-level pyramid. The
image has three feature types, indicated by circles, diamonds, and
crosses. At the top, we subdivide the image at three different lev-
els of resolution. Next, for each level of resolution and each chan-
nel, we count the features that fall in each spatial bin. Finally, we
weight each spatial histogram according to eq. (3).

The final implementation issue is that of normalization.
For maximum computational efficiency, we normalize all
histograms by the total weight of all features in the image,
in effect forcing the total number of features in all images to
be the same. Because we use a dense feature representation
(see Section 4), and thus do not need to worry about spuri-
ous feature detections resulting from clutter, this practice is
sufficient to deal with the effects of variable image size.

4. Feature Extraction

This section briefly describes the two kinds of features
used in the experiments of Section 5. First, we have so-
called “weak features,” which are oriented edge points, i.e.,
points whose gradient magnitude in a given direction ex-
ceeds a minimum threshold. We extract edge points at two
scales and eight orientations, for a total of M = 16 chan-
nels. We designed these features to obtain a representation
similar to the “gist” [21] or to a global SIFT descriptor [12]
of the image.

For better discriminative power, we also utilize higher-
dimensional “strong features,” which are SIFT descriptors
of 16 ⇥ 16 pixel patches computed over a grid with spacing
of 8 pixels. Our decision to use a dense regular grid in-
stead of interest points was based on the comparative evalu-
ation of Fei-Fei and Perona [4], who have shown that dense
features work better for scene classification. Intuitively, a
dense image description is necessary to capture uniform re-
gions such as sky, calm water, or road surface (to deal with
low-contrast regions, we skip the usual SIFT normalization
procedure when the overall gradient magnitude of the patch
is too weak). We perform k-means clustering of a random
subset of patches from the training set to form a visual vo-
cabulary. Typical vocabulary sizes for our experiments are
M = 200 and M = 400.

Figure 1.2: Three-level Spatial Pyramid toy example: There are three feature types:
circles, diamonds, and crosses. Initially, partition image into three di↵erent level
of resolution. Then, count the features found at each level of resolution. Finally,
compute the final spatial histogram.

Machine (SVM) proposed by [26] or K-Nearest Neighbor (KNN) is commonly

used as a promising classifier.

Since BoF model approximately describes an image by assigning local descrip-

tors to one of the pre-defined visual words and then vectorizes the local descriptors

into an orderless histogram, it may lose some important information of local fea-

tures and also the spatial layout of the image [27].

Recently, Spatial Pyramid (SP) proposed by [28] has shown the great success

on recognition tasks. As an extension of BoF framework, it takes into account

the spatial information. As also stated in [29], spatial appearance features are

beneficial to the scene classification tasks. To overcome the limitation of BoF

model that disregards the spatial layout of features, Spatial Pyramid recognizes

scene categories based on approximate global geometric correspondence. The idea

of SP is to represent an image with weighted multi-resolution histograms. It works

by repeatedly partitioning the image and computing histograms of local features

found at the increasing fine sub-regions. Within each sub-region, the histogram of

the pyramid matches is then created. After obtaining all histograms for all levels

and regions, they are concatenated together to form the final representation for the

image [28]. Figure 1.2 shows a toy example of Spatial Pyramid from [28].

However, as underlined in [30], there are shortcomings of BoF framework, as

well as Spatial Pyramid scheme, i.e. the limitation of histogram representation

and the loss during the patch encoding process. Thus, they propose to use Fisher

1.1 Scene Classification 5

Kernel (FK) framework that is an alternative patch aggregation strategy based on

Fisher Kernel principle demonstrated in [31]. The FK has benefits of both genera-

tive and discriminative methods to pattern recognition by deriving kernels from a

generative model of samples. Here, in general, a generative model is a full proba-

bilistic model that learns the joint probability distribution of all variables, whereas

a discriminative model only learns the conditional probability distribution, that

is a model only for the target variable(s) conditional on the observed variables.

Through this framework, patches are depicted by their deviation from a genera-

tive Gaussian Mixture Model. The corresponding representation, namely Fisher

Vector (FV), has several advantages compared with BoF. It has lower computa-

tional cost and it can perform well even when a simple linear classifier is used while

BoF requires non-linear classifier to guarantee the performance such as �

2-kernel

SVMs. In spite of the advantages, FV su↵ers from some drawbacks. The represen-

tation of FV is much denser compared with the representation of BoF that is quite

sparse, which makes it infeasible for the large-scale applications. Besides Fisher

Vector, [18] proposes a new descriptor called VLAD (Vector of Locally Aggregated

Descriptors), which is derived from both BoF and Fisher Vector. It aggregates

SIFT descriptors and generates a compact representation for an image. Based on

the experiment results compared with BoF, VLAD is cheaper to compute due to its

compactness and yields better performance for the same feature size on the same

scene classification tasks.

Besides the hand-engineered feature representations, many researchers have

been devoting their e↵orts to another area for scene representation learning. As

demonstrated above, it is one of the most accomplished feats of the human brain

to understand the world in a single glimpse. Recognizing categories of an object

or scene only takes a few milliseconds for a human. It is asserted by [32] that one

crucial property of the primate brain to have such an e�cient and e↵ective visual

recognition system is that it has a complex hierarchical organization to represent in-

formation at multiple levels of abstraction. However, over the last few years, many

visual recognition approaches have focused on learning low-level or mid-level fea-

tures using either supervised or unsupervised learning, or the combination of two.

According to [33], the capability to learn multilevel feature representations through

a hierarchical structure can benefit the automatic recognition model construction.

Furthermore, it would be useful especially when it is hard to engineer good features

for a certain visual task. In order to obtain multiple levels of representation like

the human brain does, deep learning techniques have been employed.

1.2 Deep Learning 6

In recent years, deep models have shown the ability to outperform the tradi-

tional hand-engineered feature descriptors in many fields, particularly those where

good features have not been engineered [34]. For instance, some proposed unsu-

pervised deep models have shown to perform better than state-of-the-art gradient

histogram features in part-based detection task [35, 36]. Deep models such as

Convolutional Neural Networks (CNNs) have been adopted to digit recognition

task [37] and some large-scale recognition tasks recently (e.g. such as ImageNet

introduced by [38] that consists of over 15 million labeled high-resolution images

in over 22,000 categories) and have shown the astonishing performance on object

classification [34, 39]. More details about deep learning will be illustrated in Sec-

tion 1.2.

1.2 Deep Learning

One of the core challenges in Artificial Intelligence (AI) research is imitating the

e�ciency and robustness of human brains when learning to represent information

[40]. Recent neuroscience findings have revealed the principles of how the mammal

brain governs information representation. One of the crucial findings is that the

mammal brain is organized in a deep hierarchy. Given a sensory signal, mammal

brain propagates it through a complex architecture and represents it at multiple

levels of abstraction. Each level of this architecture is corresponding to a di↵erent

area of cortex [41, 42]. Inspired by this discovery, neural network researchers had

attempted many years training the deep multi-layer neural networks [43].

With the proposing of DBN in 2006, an e↵ective training approach for deep

architectures is discovered that is implemented by adopting unsupervised greedy

layer-wise pre-training algorithm followed by supervised fine-tuning, which will be

introduced in Section 2.3. As elucidated in [7,44], it can be significantly beneficial

when pre-training is carried out for each layer of deep networks with unsupervised

learning algorithms that mainly aim to extract useful features from unlabeled data,

detect and remove the redundancies of input, and generate robust and discrimina-

tive representations by preserving only essential aspects of input data. Utilizing

unsupervised initialization tends to avoid getting stuck in local minima and enhance

the performance stability of deep networks [45].

Regarding unsupervised learning techniques of deep learning, most approaches

are based on Encoder-Decoder paradigm [46]. Encoder is a process that maps in-

put data to a typically lower-dimensional representation, while Decoder expands

the hidden-layer representation to reconstruct the initial input. The encoder and

1.3 Motivation 7

decoder are parameterized functions trained to minimize the average reconstruc-

tion error. Once a layer is trained, the hidden-layer feature is fed as the input to

another unsupervised learning model to form a deep architecture in a stacked fash-

ion so as to generate higher-level representations. Restricted Boltzmann Machines

(RBMs) [47] and Auto-Encoders (AE) [48] that will be introduced in Section 2.1

are commonly used deep learning techniques for unsupervised learning.

In recent years, feature representations learned through deep learning tech-

niques, especially Convolutional Neural Networks (CNNs), have shown ability to

outperform many traditional hand-engineered feature descriptors and set state-

of-the-art performance in many domains, such as image classification [34, 39] and

object detection [49, 50] tasks. CNNs are hierarchical models consisting of a se-

ries of alternate convolutional layers and sub-sampling layers which are followed

by several fully-connected layers and a classification layer on top of the network.

These models perform extremely well in domains with plenty of training samples

and exceed all known methods on large-scale classification challenges [51]. The

details of CNN will be elucidated in Section 2.4.

The capacity of CNNs can be controlled by varying the depth and breadth of

networks. Furthermore, CNNs preserve the neighborhood relations and spatial lo-

cality of input data in their latent higher-level feature representations by making

strong and mostly correct assumptions about the property of images, namely the

stationary of statistics and locality of pixel dependencies. Compared with standard

feed-forward neural networks of similar layer size, CNNs are easier to train due to

their attractive quality of having much fewer connections and parameters. Re-

garding the high-dimensional images, CNNs also do better than the common fully

connected deep architectures because of the number of free parameters used to de-

scribe the shared weights does not depend on the dimensionality of input [39, 52].

Figure 1.3 shows an successful example CNN architecture of LeNet-5 for digits

recognition task [37].

1.3 Motivation

Convolutional neural networks work under the stationary property of images, which

applies filters to all locations of the image to generate di↵erent activation outputs

[39]. According to [53,54], it is the nature of images to have the property of being

‘stationary’ which means the statistics of one region of an image is the same as any

other region of that image. Based on this property, the features learned from one

region of the image can also be applied to other regions of that image.

1.3 Motivation 8

Figure 1.3: Convolutional Neural Network (CNN) structure of LeNet-5 used for
digits recognition. Each plane in the structure is a feature map whose weights are
constrained to be identical.

This stationary property is leveraged in [54,55] to learn the filters and generate

image representations through convolutional processes, which we will refer to as

baseline approach in the following dissertation. To this end, one random patch

is extracted from each training image and fed to an unsupervised learning model,

such as an auto-encoder, to learn patch features, which are then used as filters for

convolutional operations to generate image representations. However, one major

drawback of this approach is that the features learned from one random patch per

training images may not be robust and representative, because patches selected

from di↵erent areas of an image may contain distinct scene objects which make the

features of these patches have di↵erent descriptive power.

In this dissertation, based on stacked auto-encoders and convolutional networks,

we propose a multi-scale network in order to improve the baseline approach. Multi-

scale networks leverage multiple random patches from each training image to learn

feature representations and then combine features learned from di↵erent patch di-

mensions to form final feature representations for images instead of only using

a single random patch to learn feature representations as described in baseline

approach. Experiment results show that our proposed multi-scale networks signifi-

cantly outperform the baseline approach for outdoor scene classification on the OT

dataset.

Whereas, although multiple patches and di↵erent patch dimensions are em-

ployed, learning features based on random patches selected from arbitrary loca-

tions of images is not robust. In addition, image representations learned through

baseline approach and multi-scale networks lack spatial appearance features which

are claimed to be valuable for scene classification tasks [29]. Therefore, we propose

a novel Spatial Deep Network (SDN) to further enhance the baseline approach by

exploiting the spatial layout of the image and adding the location constraints to

the regions where the patches are extracted so as to e↵ectively restrict the patches

1.4 Main Contributions 9

to hold the characteristics of di↵erent areas of the image.

Recently, the spatial pyramid scheme has been considered in the context of

CNNs for classification tasks. As proposed in [56], the SPP-net employs spatial

pyramid in the last pooling layer of a CNN model in order to yield a fixed-length

feature representation regardless of input image dimension, which works by parti-

tioning the input feature maps into multi-level spatial bins and then generating the

final feature maps through pooling each spatial bin. Di↵erent from spatial pyra-

mid pooling, we apply spatial pyramid to the patch extraction phase to limit the

patches to being extracted from partitioned spatial bins rather than from entire

region of images.

Exploiting the spatial layout based on the stationary property of images, the

proposed SDN can yield compact but discriminative features that incorporate both

global descriptors and local spatial information for outdoor scene images. Specifi-

cally, inspired by Spatial Pyramid scheme, the SDN works by repetitively partition-

ing the image into sub-regions, extracting one random patch from each sub-region,

and then learning patch features that serve as filters to generate feature represen-

tations for the corresponding image part through convolutional processes. After

obtaining features for all the sections in all levels, they are concatenated to form

the feature representations for the input images. According to experiment results,

SDN considerably exceeds multi-scale networks and baseline approach that both

use random patches from images. Furthermore, SDN achieves competitive perfor-

mance with other widely used classification techniques, such as CNN, BoF, and SP,

on the OT dataset. To evaluate the robustness of proposed SDN, we also apply

it to content-based image retrieval on the Holidays dataset that focuses on scene

images as well. Compared to some state-of-the-art features, such as BoF, FV, and

VLAD, our features learned from SDN attain much better retrieval performance

but with much lower feature dimensions.

1.4 Main Contributions

The main contributions of this dissertation are listed below:

• We propose a novel patch extraction strategy compared to the method shown

in [54,55] by exploiting the spatial layout based on the stationary property of

images. Instead of extracting one random patch from an arbitrary location of

each training image, we constrain the random patch selection to be performed

at di↵erent areas of the image to ensure patches carry various statistics of

di↵erent locations of that image.

1.5 Outline 10

• We propose a novel Spatial Deep Network that can yield feature representa-

tions incorporating both global descriptors and local spatial information for

outdoor scene images based on proposed patch extraction strategy. The pro-

posed SDN improves the features learning methods in [54,55] by overcoming

the lacking of spatial appearance information in image representations.

• We show that our SDN can learn competitive feature representations for

outdoor scene images which are of much lower dimensions compared to those

features generated by many widely used classification techniques.

1.5 Outline

This dissertation is organized as follows:

• Chapter 2 provides the related background knowledge on techniques for fea-

ture learning and scene classification.

• Chapter 3 investigates some basic deep learning techniques and the base-

line approach, and then demonstrates the proposed multi-scale networks for

outdoor scene classification.

• Chapter 4 describes the proposed Spatial Deep Network and evaluates the

performance for outdoor scene classification and content-based image retrieval

that also focuses on scene images.

• Chapter 5 presents the main conclusion for this dissertation and shows the

potential directions of the future work.

Chapter 2

Background for Feature Learning

and Scene Classification

After an overview of the motivations, aims, contributions and structure of the

dissertation in Chapter 1, this chapter provides necessary background knowledge

for proposed methods and outdoor scene classification tasks. Concretely, we first

review the algorithms of traditional auto-encoder by presenting the general frame-

work of auto-encoders, training processes through back-propagation, and several

commonly used optimization algorithms involved during the training. In Sec-

tion 2.2, di↵erent widely utilized classifiers for classification tasks are demonstrated.

Following that, stacked auto-encoders and the strategy of greedy layer-wise train-

ing that is applied to construct deep neural networks are described. Algorithms

for convolutional neural networks are discussed in Section 2.4. Then, other related

techniques regarding feature learning for scene images are presented in the last

section of this chapter.

2.1 Auto-Encoders

Supervised learning is a powerful technique for Artificial Intelligence. It has been

widely applied in many domains, such as recognition tasks in computer vision,

speech recognition, and self-driving cars. Nevertheless, supervised learning today

is still severely limited in spite of its remarkable success, which is because it requires

manually pre-specified feature representations for input data in most of its applica-

tions. The work on feature-engineering serves this purpose, but it is labor-intensive

and do not scale well to new problems. Thus, compared to hand-engineering, it

is beneficial if we have algorithms that can automatically learn e↵ective and ro-

bust feature representations. Auto-Encoder is such an unsupervised deep learning

11

2.1 Auto-Encoders 12

Figure 2.1: An example of 1-hidden-layer Auto-Encoder network.

technique aiming to automatically learn features or e↵ective encoding of the origi-

nal data. The features learned from AE turn out to be useful for many problems

and they are competitive with or even superior to even the best hand-engineered

representations in a range of cases [57].

2.1.1 Framework of Auto-Encoders

Auto-Encoder is a special type of feedforward Neural Networks (NN). It typically

has an input layer representing the original data or input feature vectors, one or

more hidden layers which correspond to the transformed features, and an output

layer with the same dimensionality as the input to compute the reconstruction

errors. Figure 2.1 from [57] shows an example of 1-hidden-layer Auto-Encoder

network, where Layer L1 is visible layer with input data x, Layer L2 is hidden layer

with features transformed from input, and Layer L3 is the output layer (x̂) with

the same number of units as input layer. The neurons in this single-hidden-layer

network are connected via weight matrices W1 and W2. In addition, bias vectors

b1 and b2 which are denoted as circles with ‘+1’ marks are also taken into account.

2.1 Auto-Encoders 13

2.1.2 Feedforward Pass

The feedforward pass of a neural network is to compute the activations of the output

layer from the source input data. Concretely, the forward-pass of an auto-encoder

neural network is computed as follows:

Encoder: Given input vector x, the deterministic mapping function f

✓1 trans-

forms it into hidden representation. Here, we use a to denote the activation output

of hidden layer and �(·) to represent the activation function. Based on the param-

eter set ✓1 = {W1, b1}, the typical form of this mapping process is:

f

✓1 (x) = � (W1x+ b1) , (2.1)

Decoder: After obtaining the activation of hidden layer, the function g

✓2 mapped

it back to input space by reconstructing the hypothesis vector x̂, x̂ = g

✓2(a). Based

on the parameter set ✓2 = {W2, b2}, the Decoder takes the form:

g

✓2 (a) = � (W2a+ b2) , (2.2)

Additionally, there are two commonly used activation functions for non-linear

transformation of neural networks, namely the sigmoid function (defined as Equa-

tion 2.3) and hyperbolic tangent function (defined as Equation 2.4). The output

ranges of these two activation functions are [0, 1] and [�1, 1], respectively. Fig-

ure 2.2 shows the plots of sigmoid function and hyperbolic tangent function. In this

dissertation, the sigmoid activation function is employed in most of the experiments

in order to be consistent with methods shown in [54,55].

f (z) =
1

1 + e

�z

, (2.3)

f (z) = tanh (z) =
e

z � e

�z

e

z + e

�z

. (2.4)

Taking into account the output range for sigmoid function, we should constrain

or scale the input features to be in the range [0, 1] so as to match the hypothesis

output to the input target values when implementing auto-encoders. However, the

datasets used for computer vision tasks not always fit well with such a scaling of

output, especially when the input images are in gray or color scale. Moreover,

it is hard to judge what strategy used to pre-scale input features to a specific

range is the best [57]. Thus, one option that can fix this problem easily is to

change the activation function of output nodes from sigmoid to a linear activation

function. Note that, we only use the linear activation function in the output layer,

2.1 Auto-Encoders 14

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sigmoid function

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
tanh function

Figure 2.2: Plots of sigmoid function and tanh function.

while keep using non-linear activation function (such as the sigmoid function) for

hidden layers. Implementing auto-encoders with linear decoder allows us to train

networks on real-valued input data without considering strategies to scale examples

to a certain range.

Additionally, according to [58], when non-linear activation functions of auto-

encoder are changed to linear ones for both encoder and decoder, the auto-encoder

will learn essentially the same representation as the Principal Component Analysis

(PCA).

2.1.3 Back-propagation

The back-propagation is a common technique to train a neural network applied

in conjunction with an optimization method. It attempts to minimize the loss

function by calculating the gradient of the loss function with respect to all the

weights in the network and then feeding the gradient to the chosen optimization

method.

Based on the single-hidden-layer auto-encoder introduced above, the parameters

✓ = {✓1, ✓2} of this model are required to be optimized to minimize the reconstruc-

tion error of auto-encoder, which measures the discrepancy between original input

vectors and the reconstructed vectors over the whole training set. During the train-

ing procedure, the set of parameters ✓ are learned and updated simultaneously [59]

through the batch gradient descent methods (details of several widely used opti-

mization algorithms will be introduced in Section 2.1.4). Thus, a cost function

should be defined with respect to the average reconstruction error of auto-encoder.

In this dissertation, the form of the mean square error cost function is utilized. For

one training sample, the cost function is defined as:

2.1 Auto-Encoders 15

J (✓) =
1

2
kx̂ � xk2

. (2.5)

In addition, a regularization term, also called weight decay term, is added to the

cost function so as to prevent overfitting. The regularization term helps decrease

the magnitude of the weights. Therefore, the overall cost function for a traditional

auto-encoder is described as:

J (✓) =
1

2m

mX

i=1

kx̂
i

� x

i

k2 +
�

2

�
kW1k2 + kW2k2�

, (2.6)

where, x
i

and x̂

i

correspond to the ith training sample and its reconstructed fea-

ture, respectively. Furthermore, m is the total number of training samples and �

represents the weight decay parameter which controls the relative importance of

the two terms of the cost function.

In order to train the neural networks, random initialization of W and b is

necessary and significant. As asserted in [57], the initialization with identical values

for all parameters will result in all hidden layer units of neural networks learning the

same function of the input. Thus, in practice, one e↵ective strategy for random

initialization is to randomly select values for parameters uniformly in the range

[�",+"], where " represents a value near zero. A good choice to assign " for

symmetry breaking is:

" =

p
6p

N

in

+N

out

, (2.7)

where N

in

and N

out

stand for the number of units in the adjacent layers to ✓.

After knowing the structure of the auto-encoder neural network, the forward-

pass computation, the objective function applied to training the network, and the

initialization strategy for all parameters, the back-propagation learning algorithm

can be employed to train the network by optimizing all the weights and bias.

Back-propagation is a common approach to train artificial neural networks applied

in conjunction with an optimization method. With respect to all the parameters of

the network, it computes the gradient of the cost function which will be then fed to

the optimization method to update the weights and attempt to minimize the cost

function eventually [60]. In order to calculate the gradient of the cost function, a

known, desired output value for each input is required.

The method to update parameters ✓ = {W, b} using gradient descent is as

follows:

2.1 Auto-Encoders 16

W := W � ↵

@

@W

J (✓) , (2.8)

b := b � ↵

@

@b

J (✓) . (2.9)

where ↵ is the ratio that a↵ects the quality and speed of learning, which is called

the learning rate. Training is faster when learning rate is large, while it is slower

but more accurate when learning rate is small.

The partial derivatives of the overall cost function J(✓), defined in Equation 2.6,

can be computed by back-propagation as:

@

@W

J (✓) =

"
1

m

mX

i=1

@

@W

J (✓; x
i

, x̂

i

)

#
+ �W, (2.10)

@

@b

J (✓) =
1

m

mX

i=1

@

@b

J (✓; x
i

, x̂

i

). (2.11)

The procedure of back-propagation training algorithm can be divided into two

phases: propagation and weight update. The intuition behind back-propagation is

as follows. Given an input training example x and its target output (target output

of auto-encoder is the same to the input), the forward propagation starting from the

input layer is the first run to generate all the activations of the networks, including

the hypothesis output x̂. Then, the ‘error term’ � for each node in each layer is

computed backward from the output layer, which measures how much each node

was ‘responsible’ for the errors occurred in the output. The error term for nodes in

output layer can be directly measured by the di↵erence between hypothesis output

and the target output. Based on computed �, partial derivatives are calculated for

all parameters.

Concretely, the back-propagation algorithm can be described as below:

1. Implement the forward pass, compute activations for all layers from input

layer.

2. For output layer (Layer n
l

), define �

n

l

as:

�

n

l =
@

@z

n

l

1

2
kx̂ � xk2 = � (x � a

n

l) · �0 (znl) , (2.12)

where, znl denotes the total weighted sum of inputs to Layer n

l

, including

the bias term. In addition, anl = � (znl) and �(·) is the activation function.

2.1 Auto-Encoders 17

In this dissertation, we apply sigmoid function as activation function. Thus,

the derivative of activation function is �0 (znl) = a

n

l (1 � a

n

l).

3. For l = n

l

� 1, n
l

� 2, . . . , 2, define �

l as:

�

l =
⇣�

W

l

�
T

�

(l+1)
⌘

· �0 �
z

l

�
, (2.13)

4. Compute the partial derivatives (denoted as r) for parameters:

r
W

l

J (✓) = �

(l+1)
�
a

l

�
T

, (2.14)

r
b

l

J (✓) = �

(l+1)
. (2.15)

Then, with the partial derivatives, all parameters can be updated simultane-

ously to reduce the cost function J(✓) by repeatedly taking steps of gradient descent

(use Equation 2.8 and Equation 2.9).

2.1.4 Optimization Algorithms

Gradient descent optimization method has been applied to a variety of computer

vision areas to train feature learning algorithms which achieve state-of-the-art per-

formance, such as object and scene recognition [39], action recognition [35], content-

based image retrieval [61], etc. For instance, Limited-memory BFGS (L-BFGS) and

Stochastic Gradient Descent (SGD) are two commonly employed gradient descent

methods for optimization. Only brief background knowledge about these opti-

mization methods will be included in this section since the implementation details

behind these methods are beyond the scope of this dissertation.

L-BFGS is an optimization method in the family of quasi-Newton methods,

which approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method by

consuming a limited amount of computer memory. Similar to BFGS algorithm,

L-BFGS steers its search in variable space by using an estimation to the inverse

Hessian matrix. During the optimization, L-BFGS only stores a few vectors rep-

resenting the approximation implicitly to Hessian matrix, while BFGS stores a

dense n⇥ n approximation (n denotes the number of variables in the optimization

problem). Therefore, L-BFGS requires much less computer memory during the

optimization compared with BFGS, which makes it well-suited for optimization

problems with a large number of variables [62].

2.2 Classifiers 18

SGD makes use of a small randomly-selected subset of training data to ap-

proximately estimate the gradient of the cost function in each iteration. Updating

parameters in an online fashion, SGD learning framework is attractive because it of-

ten requires much less training time in practice than batch training algorithms [63].

The number of training samples used for gradient approximation in each update

iteration is called batch size. When the algorithm sweeps through the whole train-

ing set, it performs the update for all training samples as Equation 2.8 and Equa-

tion 2.9. After each pass, the training data can be shu✏ed to prevent cycles and

several passes can be made till the algorithm converges. The appropriate batch

size should be determined through experiments to lead the algorithm to converge

smoothly. Furthermore, the value of learning rate ↵ can also significantly influence

the convergence of training.

According to [64], the current predominant optimization method in training

deep learning is SGD due to its ease of implementation and computational e�ciency

of training on the large-scale dataset. While it has been adopted extensively in

machine learning, SGD has several disadvantages. One major disadvantage is that

using SGD optimization algorithm requires much manual tuning or selection of

parameters such as learning rate, batch size, and convergence criteria. It is hard to

select good parameter values for people especially when they are not familiar with

the tasks at hand. On the contrary, L-BFGS, a batch method using a line search

procedure, is much more stable to train and easier to check convergence. Whereas,

compared with SGD, L-BFGS computes the gradient of the cost function based on

the entire training set in each iteration, which makes it not scale gracefully with

the large-scale training set. In this dissertation, both gradient methods are applied

to optimize di↵erent kinds of neural networks.

2.2 Classifiers

Classification is the problem that identifies a new test sample to one of several pre-

defined categories. In this section, several widely used classifiers related to experi-

ments of this dissertation will be introduced, which are Softmax regression model,

K-Nearest Neighbors algorithm (KNN), and Support Vector Machines (SVM).

2.2.1 Softmax

The softmax regression model is a generalization version of logistic regression to

classification problems where the class labels can take on more than two possible

values. It is applied to various probabilistic models that deal with both discrete

2.2 Classifiers 19

and continuous data, including multinomial logistic regression [65], multi-class lin-

ear discriminant analysis [66], naive Bayes classifiers [67], and artificial neural net-

works [39]. Softmax regression is a supervised learning algorithm and is usually

implemented at the final layer of neural networks as a classifier to produce the

probability distribution over all pre-defined categories.

Regarding the logistic regression, it is a binary classification model. Given a

training set:
��

x

(1)
, y

(1)
�
,

�
x

(2)
, y

(2)
�
, . . . ,

�
x

(m)
, y

(m)
�

with m labeled examples,

where y(i) 2 {0, 1} represents the label for each example, the hypothesis of logistic

regression with respect to the model parameters ✓ is:

h

✓

(x) =
1

1 + e

�✓

T

x

, (2.16)

where model parameters ✓ are trained through an optimization algorithm (L-BFGS

or SGD) to minimize the cost function defined below:

J (✓) = � 1

m

"
mX

i=1

y

(i) log h
✓

�
x

(i)
�
+
�
1 � y

(i)
�
log

�
1 � h

✓

�
x

(i)
��
#
. (2.17)

While in softmax regression model, multi-class classification rather than only

binary classification is carried on, which means the class label y(i) of training ex-

amples can take more than two values, i.e. y

(i) 2 {1, 2, . . . , k}. Thus, for a new

test example, the model will output the hypothesis that is a k dimensional vector,

each value of which represents the probability of test example to belong to the

corresponding category. The probability for each class is denoted as: p (y = j|x),
for each value of j = 1, 2, . . . , k. Concretely, the hypothesis of softmax regression

takes the form:

h

✓

�
x

(i)
�
=

2

66664

p

�
y

(i) = 1|x(i); ✓
�

p

�
y

(i) = 2|x(i); ✓
�

...

p

�
y

(i) = k|x(i); ✓
�

3

77775
=

1
kP

j=1
e

✓

T

j

x(i)

2

66664

e

✓

T

1 x(i)

e

✓

T

2 x(i)

...

e

✓

T

k

x(i)

3

77775
, (2.18)

where the term 1
kP

j=1
e

✓

T

j

x(i)
is the normalization term to make the distribution sum

to 1. In addition, ✓1, ✓2, . . . , ✓k are the parameters of the softmax model.

As demonstrated in [68], the softmax model is over-parameterized, which means

multiple parameter settings can give rise to exactly the same hypothesis function

h

✓

that maps input data to the predictions. To prevent the over-parameterization

of softmax regression, the weight decay term is added to the cost function that aims

2.2 Classifiers 20

to penalize the parameters with large values. Therefore, based on the hypothesis

vector, we can describe the cost function of softmax regression. In the following cost

function, an indicator function is defined as 1 {·} to depict whether the statement

in the function is true, namely 1{a true statement} = 1 and 1{a false statement}
= 0. Thus, the cost function is as follows:

J (✓) = � 1

m

2

6664

mX

i=1

kX

j=1

1
�
y

(i) = j

log

e

✓

T

j

x

(i)

jP
l=1

e

✓

T

l

x

(i)

3

7775
+

�

2

kX

i=1

nX

j=0

✓

2
ij

, (2.19)

where the second term is called weight decay term (also called regularization term),

which tends to decrease the magnitude of the model weights and helps prevent

overfitting.

With the cost function J (✓) shown above, softmax regression is now strictly

convex, which can guarantee only one unique solution is trained. In order to make

use of gradient descent optimization method, the derivatives (denoted as r
✓

j

J (✓))

of cost function with respect to all parameters ✓ are required:

r
✓

j

J (✓) = � 1

m

mX

i=1

⇥
x

(i)
�
1
�
y

(i) = j

� p

�
y

(i) = j|x(i); ✓
��⇤

+ �✓

j

. (2.20)

2.2.2 K-Nearest Neighbors

The K-Nearest Neighbors (KNN) algorithm [69] is one of the oldest and simplest

methods for pattern recognition. Nevertheless, it usually has competitive perfor-

mance or achieves state-of-the-art in some domains when incorporated cleverly

with the prior knowledge [70]. The input of KNN algorithm is training examples

in the feature space with corresponding labels. The output for KNN applied to

classification tasks is the class name for the unlabeled test (or query) example. The

Figure 2.3 shows a sample plot of KNN criteria.

Given the training set features with labels, Y = {y1, y2, . . . , ym}, which con-

tains m examples, and a query example x. The descriptors for query and training

examples are in the same feature space. Thus, the k⇤-th nearest neighbor, denoted

as N
k

(x), of x in Y is defined as:

N

k

⇤ (x) = k

⇤ arg min
y

i

2Y
d (x, y

i

) , (2.21)

2.2 Classifiers 21

Figure 2.3: Sample plot of K-Nearest Neighbors criteria where k = 4 and the
training examples have two di↵erent labels, ‘Class A’ and ‘Class B’.

where function d (x, y
i

) represents the distance between query x and training exam-

ple y

i

. A commonly used distance metric for KNN classifier is Euclidean distance

[71]. The resulting k nearest neighbors is N
k

(x) = {N1⇤ (x) , N2⇤ (x) , . . . , Nk

⇤ (x)}.
After the indexing/ranking system generates a set of k nearest neighbors hy-

potheses for each query sample, the voting criteria should be selected to leverage

the KNN retrieval list so as to yield the final label for each query example. The

parameter k is a positive integer. When k = 1, the KNN algorithm simply assigns

the class of the single nearest neighbor to query.

There are several possible voting criteria which exploit the information provided

by the ranks of nearest neighbors and their corresponding distances to the query

descriptors. The commonly employed criteria are as follows:

• Majority Vote: It counts the total number of votes for each query examples

without taking into account the rank and distance information. The query

example is assigned to the class that appears most common among its k

nearest neighbors.

• Rank Vote: It exploits the rank information of retrieval list independently of

distance information.

• Distance Vote: It uses the absolute distance information of obtained nearest

neighbor list independently of rank information.

2.2 Classifiers 22

• Distance Ratio Criteria: [72] It assigns a weight computed by distance ratio

to the contributions of neighbors in order to discard unreliable votes. The

weight for each nearest neighbor is defined as: 1
d

, where d is the distance

between the query and the neighbor.

• Adaptive Criteria: [73] The weights of nearest neighbors are derived from the

distance. Given a ranking list containing k nearest neighbors, the weight

(denoted as � (x, y)) of a certain neighbor y with respect to query x is defined

by:

� (x, y) = max (d (x,N
k

⇤ (x)) � d (x, y) , 0) , (2.22)

where d (x, y) is the distance between query x and a certain nearest neighbor

y. This criteria asserted by authors is more comparable across queries than

the absolute distance d (x, y) and the distance ratio criteria in many cases.

Weighting method is beneficial to KNN algorithm because it guarantees the

nearer neighbor contribute more than the more distant ones. Hence, for a query

example, the final voting class is the one with the highest weight in the ranking list.

In this dissertation, we adopt the adjusted version of Adaptive Criteria. We mea-

sure the weight � (x, y) based on the distance from query to the reference (k⇤ + 1)-th

nearest neighbor when k

⇤
< m, wherem is the total number of examples in training

set. While when k

⇤ = m, the criteria are the same as [73]. The reason why this

adjustment is applied is because when k

⇤
< m, the weight of k⇤-th nearest neighbor

is zero that means it will contribute nothing to the final voting. Thus, the final

voting will only depend on the weights of (k⇤ � 1) nearest neighbors, which results

in the loss of k⇤-th nearest neighbor’s information of ranking list. Moreover, this

adjustment also fixes the potential problem of no voting is yielded when k = 1.

Therefore, in this dissertation, when the value of k⇤ is less than m, a retrieval list

consisting of (k⇤ + 1) nearest neighbors is fed to KNN algorithm and the applied

voting criteria is:

� (x, y) = max (d (x,N
k

⇤+1 (x)) � d (x, y) , 0) . (2.23)

2.2.3 Support Vector Machines

Support Vector Machine (SVM) is a kind of supervised learning model utilized for

classification and regression analysis. It was first introduced in the early 1990s and

then lead to an explosion of deepening theoretical analysis and applications. The

2.2 Classifiers 23

support vector machines along with neural networks are now playing significant

roles as the standard tools for machine learning and data mining [74].

As stated in [26], SVM is a learning machine for two-group classification prob-

lems, which conceptually implements the ideas to map the input data into some

higher dimensional feature space through some non-linear mapping methods. Fol-

lowing that, a linear optimal decision surface will be constructed in this feature

space with special attributes that ensure the high generalization capacity of the

network. Unlike traditional methods that aim to minimize the training error, the

goal of SVM is to minimize the upper bound of generalization error by maximizing

the margin between the separating data [75].

Since the dimension of the feature space is huge, how to find the hyperplane that

can separate the two classes data well is the main problem. However, according

to [26], in order to construct the optimal hyper-plane separating data into two

classes, only a small amount of training data needs to be taken into account, namely

the support vectors, which can determine the margin between two-group data. It

is the properties such as condensing training data information and providing the

sparse representation with only very small number of data points that makes the

support vector machine attractive and popular [76].

As demonstrated in [26, 77, 78], given a set a labeled training data contain-

ing m examples,
��

x

(1)
, y

(1)
�
,

�
x

(2)
, y

(2)
�
, . . . ,

�
x

(m)
, y

(m)
�

, where y

(i) 2 {�1, 1}
represents the label for each example, the goal for SVM is to find the maximum

margin hyperplane that separates the points with y

(i) = 1 from those points having

y

(i) = �1.

The input data points are said to be linearly separable when there exists a

vector w and a scalar b so that the two hyperplanes described by two equations

below can separate the input data and there are no points lie between them. The

region bounded by them is called ‘margin’.

w · x(i) � b = 1, (2.24)

w · x(i) � b = �1, (2.25)

Based on geometry, it can be found that the distance between these two hy-

perplanes is 2
kwk . In order to maximize the width of margin, kwk should be mini-

mized. Meanwhile, the data points should be prevented from falling into the mar-

gin. Hence, the following inequality constraint should be satisfied for all elements

in the training set:

2.2 Classifiers 24

Figure 2.4: An example of linear separating hyperplane for the separable case in 2-
dimensional space. The maximum margin distance is shown. The support vectors
are those dots and circles, which define the margin of maximum separation between
two classes.

y

(i)
�
w · x(i) � b

�
� 1, i = 1, 2, . . . ,m. (2.26)

Thus, the optimal hyperplane defined below is the unique one that can separate

the training data points with a maximal margin, where w0 and b0 are parameters

to depict the optimal hyperplane:

w0 · x � b0 = 0. (2.27)

It determines the direction w

|w| where the distance between two di↵erent classes of

training vectors is maximal. The distance can be represented by:

⇢ (w, b) = min
(x:y=1)

x · w
|w| � max

(x:y=�1)

x · w
|w| . (2.28)

The hyperplane (w0, b0) is the argument that makes the distance maximal:

⇢ (w0, b0) =
2

|w0|
=

2
p
w0 · w0

. (2.29)

Therefore, it can be seen that constructing the optimal hyperplane by minimizing

w · w is a quadratic programming problem. Figure 2.4 shows an example of a

separable problem in 2-dimensional space.

2.2 Classifiers 25

When there exists no hyperplane to split the two-classes examples without error,

the soft margin method will be used to choose a hyperplane which separates the

training data as cleanly as possible, namely with a minimal number of errors, while

still maximize the distance to the nearest split examples [26,79]. To solve this kind

of problems, some non-negative variables ⇠
i

� 0, for i = 1, 2, . . . ,m is introduced,

which measures the degree of misclassification of the training data x

(i). The new

constraint is:

y

(i)
�
w · �

�
x

(i)
�

� b

�
� 1 � ⇠

i

, i = 1, 2, . . . ,m. (2.30)

Subjected to this constraint, the objective function for constructing an optimal

separating hyperplane can be expressed as:

min
w,b,⇠

(
1

2
kwk2 + C

mX

i=1

⇠

i

)
, (2.31)

where �
�
x

(i)
�
is a function mapping the data x

(i) to higher-dimensional space, and

C > 0 is the regularization term.

The original hyperplane algorithm for SVM is a linear classifier in the parameter

space. Whereas, SVM is easily extended to a non-linear classifier by applying the

kernel trick �. Through choosing a proper mapping �, the training points could

become linearly or mostly linearly separable in the high-dimensional feature space.

Figure 2.5 intuitively shows how kernel machine works. The resulting algorithm

in the feature space is formally similar to the algorithm introduced before, except

that every dot product is replaced by a nonlinear kernel function, which allows

the maximum-margin hyperplane to be constructed in the transformed feature

space. Since this transformation may be not linear, the resulting hyperplane in

high-dimensional space could be non-linear in the original input space.

The performance of SVM largely depends on the kernel, which will directly

generate the mapped patterns � (x) for data [80]. By choosing di↵erent sorts of

kernels, it is available to let SVM realize Radial Basis Function, Polynomial and

Multi-layer Perceptron classifiers. According to [81], support vector machine has

advantages for the automatic model selection compared with the traditional ways

of implementing them. During the training of SVM, both the optimal number and

locations of basis functions will be automatically acquired.

2.3 Stacked Auto-Encoders and Greedy Layer-wise Training 26

Figure 2.5: Kernel machines used to compute a non-linearly separable function into
a higher dimension linearly separable function.

2.3 Stacked Auto-Encoders and Greedy Layer-

wise Training

Deep learning approaches attempt to learn complex feature hierarchies. Lower-

level features are first learned and used as the input to learn features at higher-

levels. A system with the capacity to learn multi-level feature representations

automatically can yield complex transformation functions that map the input data

directly to higher-level abstract representations without heavily requiring hand-

engineered features [82]. This kind of automatic learning is crucial especially when

people do not have much prior knowledge on how to explicitly describe the raw

input data. It becomes increasingly significant as the amount of accessible sensory

data and the range of applications of machine learning continuing growing.

Stacked auto-encoder (SAE) is a deep neural network that adopts greedy layer-

wise training and fine-tuning strategy [7, 48] to train the parameters for networks.

It consists of multiple layers of auto-encoders where the hidden activation output

is wired as input to the successive layer and usually a softmax classifier layer

at the end to perform classification tasks. Auto-Encoders have been successfully

applied as building blocks to build and initialize deep multi-layer neural networks

in many works, such as [48, 83, 84]. Regarding the greedy layer-wise training, it

performs a layer-by-layer initialization: first train the lower-level layer through an

unsupervised learning algorithm which can yield the initial parameters for that

layer. The learned hidden feature representation is then used as input to the

subsequent higher-level layer, where similar parameters initialization based on an

unsupervised learning technique is carried on. After pre-training all the layers, a

2.3 Stacked Auto-Encoders and Greedy Layer-wise Training 27

global fine-tuning of model’s parameters is performed using a supervised training

criterion.

The greedy layer-wise pre-training approach has been shown empirically to help

to mitigate the di�cult optimization problem of deep networks, which prevents the

training from getting stuck in the kind of poor solutions that previous work with

random initializations typically reaches [83]. Discussion in [82] shows that unsu-

pervised training amounts to a form of regularizer or prior for the deep network,

which constrains a region in parameter space where a solution is allowed. The

constrained region is near to the features learned by unsupervised training which

hopefully will capture the important statistical structure of input data. There are

three aspects particularly significant in the greedy layer-wise training strategy [48]:

• Pre-training one layer at a time in a greedy way,

• Leveraging unsupervised learning algorithm at each layer so as to preserve

the information from input,

• Performing global fine-tuning over the entire neural network with respect to

training criterion of interest.

Therefore, the training procedure of SAE is based on the training of each build-

ing block, such as Auto-Encoder and Softmax classifier discussed above:

1. Unsupervised Training: Given input data, train the first auto-encoder to

learn hidden layer features and also the initial values for network parameters

✓ = {W, b}.

2. Unsupervised Training: The hidden layer features from the first auto-encoder

are fed to another auto-encoder as the input. Train the second auto-encoder

to obtain corresponding hidden layer features and weight parameters.

3. Repeat training process as in step (2) until the desired number of additional

layers are trained.

4. Supervised Training: Feed the hidden layer features of the last auto-encoder

to a supervised classifier, such as Softmax model, to pre-initialize the weights

for classifier.

5. Supervised Training: Implement a global fine-tuning on the entire network

which is composed of all building blocks already trained above with respect

to a supervised criterion similar to that of Softmax classifier.

2.4 Convolutional Neural Networks 28

2.4 Convolutional Neural Networks

According to [42], though it is found to be di�cult to train deep supervised neural

networks before greedy layer-wise unsupervised pre-training is used, there is one

notable exception in artificial neural networks: Convolutional Neural Networks

(CNN), which are inspired by the hierarchy of the visual system. The first compu-

tational, multilayered neural network model is found in Neocognitron proposed by

Fukushima [85], which is based on the local connectivities between neurons and hi-

erarchically organized transformations of images. Later, following this idea, LeCun

and his collaborators built and trained gradient-based convolutional networks and

set state-of-the-art on several pattern recognition tasks [37]. To this day, convolu-

tional neural networks hold state-of-the-art performance in various computer vision

areas, such as object recognition [49], face recognition [86], image classification [39],

image parsing [87], etc.

Convolutional neural networks are deep hierarchies composed of several convo-

lutional layers, each of which is often followed by a subsampling layer, and one or

more fully connected layers the same as in a standard multi-layer neural network.

The architecture of CNN is designed to leverage the 2D structure of input images

or other types of 2D input data. A convolutional neural network automatically

provides some degree of translation invariance which is achieved by local connec-

tions and tied weights following with some form of pooling operations [88]. Another

advantage of CNNs compared with standard deep neural networks is the ease of

training because CNN has much fewer parameters to be optimized, especially when

applying on high-resolution images, than fully connected networks with the same

number of hidden layers. For fully connected networks, it is computationally ex-

pensive to learn features from the entire image. Regarding convolutional networks,

due to the local connectivity property between neurons, CNNs allow each hidden

unit to connect to only a small subset of the input units. Specifically, each hidden

unit of the locally connected network, such as CNN, will only connect to pixels in a

small contiguous region in the input image [42]. Furthermore, based on the weight

sharing idea, each filter is replicated across the entire visual field, which means the

replicated units share the same weight vectors and bias to form a new feature map.

Thus, the learning e�ciency can be increased using weight sharing by significantly

reducing the number of free parameters to be learned [59].

A convolutional neural network consists of a number of convolutional and sub-

sampling layers which are then optionally followed by fully connected layers. Fol-

lowing the similar input scales applied in some famous CNN models like [37, 39],

we assume the input image for a CNN model has dimension of m ⇥ m ⇥ r, where

2.4 Convolutional Neural Networks 29

m is the height and width of the image and r represents the number of channels,

for instance, gray-scale image has r = 1, while color image has r = 3. There will

be k filters (or kernels), where the value of k is pre-defined, with the dimension of

n⇥n⇥q. The number of channels of filters q can either be equal to or smaller than

r and may vary for each filter. The filters are applied to each location of the input

image to obtain the di↵erent activations. Assuming no extra pixels are padded

around the image, the k feature maps of size m � n + 1 will be produced after

convolving k filters with the original image. Then, each feature map is subsampled

through typically max or mean pooling over p⇥p contiguous regions. Moreover, an

additional non-linear function layer is usually applied to each feature map before

or after the pooling layer to increase the nonlinearity of decision function.

Figure 1.3 shows an example CNN architecture of LeNet-5 for digits recognition

task [37] which consists of 2 convolutional layers followed by 2 subsampling layers,

and three fully connected layers.

2.4.1 Feedforward Pass

In this section, several commonly applied building blocks of the CNN model are in-

troduced, including the convolutional layer, pooling layer, non-linear layer, dropout

layer, and loss layer.

2.4.1.1 Convolutional Layer

As stated in [39, 53], it is the nature of images to have the property of being

‘stationary’ which means the statistics of one region of an image is the same as any

other region of that image. Based on this property, the features extracted from

one part of the image can be applied to all locations in the image. This is also the

assumption that convolutional neural networks make.

At a convolutional layer, a feature map is obtained by repetitively applying

a learnable linear filter across sub-regions of the feature maps from the previous

layer. In other words, to form the feature map, previous layer’s feature maps

are convolved with filters, a bias term and then a non-linear activation function

is applied. Moreover, each resulted feature map may combine convolutions with

multiple input maps. If we denote the input from the previous layer as x, the k-th

feature map at a given layer as h

k, and the filters to form this feature map are

weights W k and bias b
k

, then the filter map h

k can be described as:

h

k

ij

= �

⇣�
W

k ⇤ x

�
ij

+ b

k

⌘
, (2.32)

2.4 Convolutional Neural Networks 30

Figure 2.6: An example of convolutional layer.

where � (·) is a non-linear activation function and the mark ‘⇤’ represents the 2D

convolution operation.

Each convolutional hidden layer is comprised of multiple feature maps to en-

rich the representation of data:
�
h

k

, k = 1, 2, . . . , K

. For each hidden layer, the

weight W can be described in a 4D tensor showing elements for every combina-

tion, including: 1) output feature map, 2) source feature map, 3) source vertical

position, and 4) source horizontal position. While the biases b can be represented

as a vector that contains one element for each destination feature map. Figure 2.6

shows an example of the convolutional layer. In the figure, the weight is denoted

as W kl

ij

that links each pixel of the k-th feature map of layer m, with the pixel at

coordinates (i, j) of the l-th feature map at layer (m � 1).

2.4.1.2 Pooling Layer

Another important concept idea of CNN is pooling that works as a form of non-

linear down-sampling. After obtaining features through convolution, it is beneficial

to further aggregate statistics of these features at various locations [89]. One can

choose max or mean pooling for such an aggregation operation. By applying pool-

ing operation, the resulting features can be much lower in dimension compared

with utilizing all extracted features from the convolutional layer. Furthermore, it

can provide a form of translation invariance by computing the max or mean value

of a particular feature over a part of the image. This process is to make sure even

the image features have some small local changes, the same result can still be ac-

quired after pooling, which is significant for object recognition and detection [59].

The pooling operation is implemented by partitioning input image into a set of

either non-overlapping or moderately overlapping rectangles and computing the

2.4 Convolutional Neural Networks 31

maximum or average value for each such sub-region.

2.4.1.3 Nonlinear Layer

In order to increase the nonlinear properties of the decision function learned by

convolutional neural networks, a nonlinear activation function is required. The

standard way to add nonlinearity to a neural network is applying the sigmoid func-

tion (Equation 2.3) or hyperbolic tangent function (Equation 2.4). Another option

for this nonlinearity purpose is adding a ReLU layer, which stands for Rectified

Linear Units. The ReLU layer leverages the non-saturating activation function

defined below:

f (x) = max (0, x) . (2.33)

It increases nonlinearity of the transformation function and the overall network

without a↵ecting the receptive fields of the convolution layer. As claimed in [39],

deep convolutional neural networks using ReLU train several times faster compared

to the networks with tanh units.

2.4.1.4 Dropout Layer

Training the fully connected layers is prone to overfitting since these layers oc-

cupy most of the parameters of a convolutional neural network. The technique

introduced recently called ‘dropout’ aims to prevent training from overfitting [90].

Dropout is achieved by setting the output of each hidden unit to zero in terms of

a specific probability, like 0.5 applied in [39]. In this way, the dropped out neurons

will contribute nothing to forward pass computation and will not be taken into

account during the back-propagation. Thus, it is similar to reducing the number

of units in fully connected layers. Through this method, the network will create

a di↵erent architecture every time the input is presented sharing exactly the same

weights. According to [39], dropout can ensure the neurons in the fully connected

layer are independent of each other, which can reduce the co-adaptions among

neurons. As a consequence, the network is forced to learn more robust and useful

features with any random subsets of hidden units. During the test phase, all neu-

rons in hidden layer will be utilized but with a multiplication by 0.5 (equal to the

dropout probability) on their outputs, which reasonably approximates the geomet-

ric mean of the predictive distributions that are generated by di↵erent dropped out

networks. Furthermore, the training speed can be notably improved when applying

dropout in convolutional neural networks.

2.4 Convolutional Neural Networks 32

2.4.1.5 Loss Layer

Di↵erent kind of loss functions can be utilized for di↵erent tasks. For instance:

• Softmax Loss is a widely applied loss function for predicting a single class

within m mutually exclusive classes, where m is the number of class. For

example, [39] uses output of the last fully connected layer as input to feed to

a 1000-way softmax so as to generate a distribution over 1000 categories.

• Cross-Entropy Loss is adopted to predict m independent probability values

within the range of [0,1] [91].

• Euclidean Loss is utilized for regressing to real-valued labels, which are in

the range of [�inf, inf] [92].

2.4.2 Back-propagation

Given the training data and the corresponding labels pair (x, y), after propagat-

ing through the forward pass and defining the overall cost function J (W, b; x, y),

back-propagation algorithm is implemented to optimize the parameters (W, b). As

introduced in Section 2.1.3 for auto-encoder neural networks, the back-propagation

algorithm requires that in order to calculate the error term �

l for a neuron at layer

l, we should first compute the errors of units in next layer (l + 1) that are con-

nected to the node of interest in the current layer l. Then, multiply each of those

connections by the associated weights defined at (l + 1)-th layer. Finally, the error

term �

l is computed by multiplying this quantity with the derivative of activation

function based on the pre-activation inputs zl [88]. After calculating the error term

for each layer, the partial derivatives r can also be computed.

If softmax loss function is applied in the last layer of CNN, the �

n

l , where n

l

represents the output layer, can be directly computed by the di↵erence between

predicted output and the target output:

�

n

l = � (x � a

n

l) · �0 (znl) , (2.34)

where, znl denotes the total weighted sum of inputs to Layer n
l

, including the bias

term. In addition, anl = � (znl) and �(·) is the activation function.

Let the error term of l-th layer be �

l, where l = n

l

� 1, n
l

� 2, . . . , 2. If the

l-th layer is densely connected to (l + 1)-th layer, the error term �

l for l-th layer is

defined as:

�

l =
⇣�

W

l

�
T

�

(l+1)
⌘

· �0 �
z

l

�
, (2.35)

2.4 Convolutional Neural Networks 33

and the gradients for parameters are:

r
W

l

J (✓) = �

(l+1)
�
a

l

�
T

, (2.36)

r
b

l

J (✓) = �

(l+1)
. (2.37)

Regarding the convolutional layers followed by a sub-sampling layer, a block

of pixels in the output feature map of the convolutional layer (Layer l) will be

down-sampled to only one pixel in corresponding map in the next layer (Layer

l + 1). Thus, we should up-sample the error map of (l + 1)-th pooling layer to the

same dimension as the convolutional layer’s map to compute the error map at layer

l. Then multiply the up-sampled error map with the derivative of the activation

function at layer l [88].

The error is propagated as below:

�

l

k

= upsample

✓⇣
W

(l)
k

⌘
T

�

(l+1)
k

◆
· �0

⇣
z

(l)
k

⌘
, (2.38)

where k represents the filter number and the �0
⇣
z

(l)
k

⌘
is the derivative of activation

function at l-th layer. By computing the incoming error from the next layer of the

pooling layer, the upsample (·) operation propagates the error through the pooling

layer to convolutional layer. For example, when mean pooling is applied, upsample

simply uniformly distributes the error for each pooling pixel with respect to the

corresponding block area in the convolutional layer. If the max pooling is adopted,

the error from the pooling layer is only propagated to the unit that is selected as

the max among the block region in the convolutional layer.

Eventually, the gradient is computed based on the filter maps and the error ma-

trix �

(l)
k

will be used, and should be flipped in the same way as in the convolutional

layer:

r
W

(l)
k

J (W, b; x, y) =
mX

i=1

⇣
a

(l)
i

⌘
⇤ rot90

⇣
�

(l+1)
k

, 2
⌘
, (2.39)

The operation
⇣
a

(l)
i

⌘
⇤ �

(l+1)
k

represents the ‘valid’ convolution between the i-th

input for l-th layer and the error with respect to the k-th filter map, where a

(l)

describes the input to l-th layer, for example a(1) is the input image to the network.

The bias gradient can be directly computed by simply summing over all the

entries in �

(l+1)
k

, the location for each entry is denoted as (u, v):

2.5 Other Related Techniques 34

r
b

(l)
k

J (W, b; x, y) =
X

u,v

⇣
�

(l+1)
k

⌘

u,v

. (2.40)

2.5 Other Related Techniques

In this section, the Principal Component Analysis (PCA) and whitening are de-

scribed which aim to perform feature dimension reduction and image preprocessing

respectively.

2.5.1 Principal Component Analysis

Principal Component Analysis is a dimensionality reduction algorithm that can be

used in a learning system to further reduce the dimension of learned features. Using

an orthogonal transformation, PCA aims to extract the important information from

data and convert a set of correlated variables into a set of linearly uncorrelated

variables, which are called principal components. The principal components are

orthogonal since they are the eigenvectors of the symmetric covariance matrix. The

first principal component is required to have the largest possible variance and each

other succeeding component is computed under the constraint of being orthogonal

to the first principal component and in turn has the highest variance possible. By

finding a lower dimensional subspace which the original data will project onto,

PCA attempts to approximate the input with a much lower dimensional one with

very little errors being incurred [93].

To calculate the principal components, the covariance matrix ⌃ should be ob-

tained:

⌃ =
1

m

mX

i=1

�
x

(i)
��
x

(i)
�
T

, (2.41)

The input data is denoted as x. If the mean of x is zero, then the ⌃ is exactly the

covariance matrix of x.

Then, the matrix of eigenvectors U which diagonalizes the covariance matrix ⌃

can be found:

U

�1⌃U = D, (2.42)

where D is the diagonal matrix of eigenvalues of ⌃. The matrix U has the form:

2.5 Other Related Techniques 35

U =

2

64
| | |
u1 u2 · · · u

n

| | |

3

75 , (2.43)

where, u1 is the first eigenvector with the largest eigenvalue, and u

n

represents the

n-th eigenvector of covariance matrix, and the n denotes the dimensionality of the

input data x. The corresponding eigenvalues are �1,�2, . . .�n

. Thus, the entire

data x can be represented in the (u1, u2, . . . un

)-basis as x
rot

= U

T

x.

Then, if we want to reduce the data to a k dimensional space, we can just

extract the first k components of x
rot

, where k < n describes the top k directions

of variation. When we retain k principal components, the percentage of variance

retained is:

⌃k

j=1�j

⌃n

j=1�j

. (2.44)

2.5.2 Whitening

The images have strong correlations between nearby pixels, especially the two-way

correlations. When dealing with images, it is necessary to ensure the learning sys-

tem focus on modeling the higher-order correlations rather than getting distracted

by the two-way correlations of the image. Whitening transformation is such a pre-

processing method aiming to remove the second-order structure of the image. It is

implemented by multiplying the raw data by a whitening matrix. Specifically, the

desiderata of training images for a learning algorithm are: 1) the features are less

correlated with each other, 2) all features have the same variance [94].

Based on the knowledge about PCA introduced in the previous section, we

can obtain the rotated version of data x

rot

through multiplying original data with

eigenvector matrix U , which is x

rot

= U

T

x. Here, in order to make each input

feature x

rot,i

have unit variance, we can rescale each feature by 1p
�

i

. Followed this

way, the whitened data x

PCAwhite

can be defined as:

x

PCAwhite,i

=
x

rot,ip
�

i

. (2.45)

The covariance matrix of PCA whitened data is equal to the identity matrix I,

which means di↵erent components of x
PCAwhite

are uncorrelated and all have vari-

ance 1.

However, the way to make data have identity covariance matrix isn’t unique.

For example, let matrix R be any orthogonal matrix satisfying RR

T = R

T

R = I,

2.5 Other Related Techniques 36

then the covariance matrix of data version Rx

PCAwhite

is also equal to identity

matrix. To solve this problem, the ZCA whitening is applied by setting R = U

which ensures the transformed data be as close as the original input data. Thus,

ZCA whitened data is:

x

ZCAwhite

= Ux

PCAwhite

. (2.46)

In order to perform whitening in practice, it should be taken into account that

the values of some eigenvalues may near 0, which will cause problems during the

scaling phase when dividing the rotated data by
p
�

i

. Therefore, a regularization

term ", which is a small positive constant value, will be added to the eigenvalues

before scaling step:

x

PCAwhite,i

=
x

rot,ip
�

i

+ "

. (2.47)

The employing of regularization term " can also slightly smooth the input image.

Chapter 3

Multi-scale Networks for Scene

Classification

In this chapter, we propose multi-scale networks that exploit the stationary prop-

erty of images for outdoor scene classification. Our proposed method is inspired by

baseline approach described in [54,55] and is based on the classification techniques

presented in Chapter 2. Before showing the performance of our methods, scene clas-

sification performance of some basic deep learning techniques and also the baseline

approach are investigated on the same scene dataset as comparisons. Specifically,

basic deep learning techniques such as traditional auto-encoders, stacked auto-

encoders, and convolutional neural networks are implemented.

In this chapter, we first demonstrate the methods that will be used including

the basic deep learning techniques, baseline approach, and proposed multi-scale

networks. Then, we describe datasets used for outdoor scene classification and also

a scene dataset for content-based image retrieval that will be utilized in Chapter 4

to evaluate the performance of features generated from our proposed methods.

After that, the detail experimental settings, experiment results, and analysis are

provided. Following that, we present discussion about the applied techniques and

conclusion for this chapter.

3.1 Applied Techniques

This chapter focuses on five learning techniques for scene classification, which are

traditional auto-encoders, stacked auto-encoders, convolutional neural networks,

the baseline approach, and our proposed multi-scale networks. Among them, de-

tails about the AE, SAE, and CNN have been discussed in Chapter 2, where in

this dissertation, we employ sigmoid activation function for Encoder and linear

37

3.1 Applied Techniques 38

activation function for Decoder so as to train auto-encoders on real-valued input

data without considering strategies to scale examples to a certain range. Therefore,

we aim to demonstrate the baseline approach and proposed multi-scale networks

in this section.

Baseline approach is a single-layer network for feature learning according

to [54,55]. Based on the stationary property of images, the statistics of one region

of the image is the same as any other region of that image, which means the fea-

tures learned from one region of the image can also be applied to other regions of

that image. Thus, the baseline approach first extracts a random patch from the

original input image and then learns patch features through unsupervised learning

techniques, such as auto-encoders. Then, the patch features are used as filters to

generate feature representations for the input image. Finally, a classifier is trained

to perform classification tasks based on the generated feature representations. Con-

cretely, the feature learning procedures are described as:

1. Extract one random patch from each input training image.

2. Apply preprocessing to the extracted patches.

3. Learn patch features that are used as filters for convolutional operations

through auto-encoders.

4. Generate feature representations for images through convolutional and pool-

ing processes.

5. Train a classifier for the classification tasks.

Multi-scale network is proposed to improve baseline approach by making

full use of the stationary property of the image and the learning ability of stacked

auto-encoders. Following the same feature generating scheme as baseline approach,

we propose to extract multiple random patches and learn patch features through

SAE model instead of extracting only one random patch from each training im-

age. Here, we refer this SAE model as SAE for filter learning. Furthermore, we

propose to combine feature representations learned from di↵erent sizes of patches.

To this end, we parallel several feature learning networks with similar structures

to construct a novel multi-scale network. In this way, we can process the im-

age with di↵erent dimensions of patches and then combine feature representations

learned from di↵erent patches to form new representations for images. The com-

bined representations are then fed to another SAE model to learn compact feature

representations, where we refer this SAE model as SAE for dimension reduction.

3.1 Applied Techniques 39

Patch
Extraction

Filter
Learning

Feature
Generation

Feature
Combination

Dimension
Reduction

Figure 3.1: Structure and feature learning procedures of proposed multi-scale net-
works.

Figure 3.1 displays the structure and feature learning procedures of multi-scale

networks.

Concretely, the feature learning of multi-scale networks are as follows:

1. Patch Extraction: Multiple random patches are extracted from each training

image.

2. Filter Learning: Following the random patch extraction, patches are trans-

formed into vectors and fed to an SAE to learn parameters. Assuming the

extracted patch has dimension w⇥w and d channels and the auto-encoder has

K hidden units, after unsupervised learning of AE and supervised fine-tuning

through entire SAE model, we will obtain parameters {W, b} of encoder part

with sizes K ⇥ N and K ⇥ 1 respectively, where N = w · w · d. Then, they

are used as filters for the following convolutional operations.

3. Feature Generation: After learning {W, b}, each row of W is reshaped to a

w ⇥ w ⇥ d matrix that serves as a kernel for convolutional processes, which

will result in K kernels ultimately. To generate feature maps for the image

in the dataset, previous layer’s feature maps of the image are convolved with

obtained filter maps, added a bias term b, and then applied a non-linear

activation function, where the sigmoid activation function is employed in this

thesis. Following that, the pooling operations are performed to aggregate

statistics of the convolved feature maps at various locations.

4. Multi-scale Processing: Repeat the steps 1-3 with di↵erent patch dimensions

on all branches of multi-scale networks to generate feature representations.

3.2 Datasets 40

5. Feature Combination: After generating features in all branches of multi-scale

networks, combine the features generated from di↵erent patch dimensions to

form the new features for images.

6. Dimension Reduction: Feed the combined features to an SAE model to fur-

ther learn compact feature representations for images.

3.2 Datasets

• OT Dataset:

Since this dissertation mainly aims to learn feature representations for scene

classification, the dataset used to test the performance of various deep learn-

ing techniques is a challenging scene classification dataset proposed in [3],

which we will refer to as the OT dataset.

The OT dataset has 2688 images and is divided into 8 categories, including

360 coasts, 328 forests, 260 highway, 308 inside-cities, 374 mountain, 410

open-countries, 292 streets and 356 tall-buildings. Classifying images in the

OT dataset is thought to be challenging because the images have illumination

changes, scale variations, intra-class variabilities, and inter-class similarities.

For example, note that river and forest scenes are all considered as forest, and

there is not a specific sky scene since almost all of the images contain the sky

object. In addition, the images belonging to class ‘insidecity’ may similar to

some images in class ‘street’. These annotations result in a high inter-class

similarities. The resolution of each image is 256 ⇥ 256 pixels. Figure 3.2

shows some random example images from the OT dataset.

Similar to the train/test split shown in [95], we split the dataset into 2,288 im-

ages for training, 200 images for testing, and 200 images for cross-validation.

Training set images are used to learn network weights and biases, ✓ = {W, b}.
The cross-validation set is applied to select the best values for non-learnable

algorithm parameters such as the network structure, weight decay � for cost

functions, k for KNN algorithms, learning rate ↵ and batch size for CNN

models and so on. Moreover, the testing set consists of examples that are

only used to assess the performance of a fully-trained model.

• Holidays Dataset:

In order to further evaluate the performance of learned feature representations

through proposed spatial deep networks in Chapter 4, we also apply our

3.2 Datasets 41

Coast Forest Highway Inside City

Mountain Opencountry Street Tallbuilding

Figure 3.2: Sample images from the OT dataset.

method for content-based image retrieval on a scene retrieval dataset.

The Holidays dataset [96] is a set of images which mainly contains personal

holidays photos involving a very large variety of scene types that are in high-

resolution images. It consists of 1491 vacation photographs corresponding to

500 groups, each of which represents a distinct scene or object. One image

from each group serves as a query and the correct retrieval results are the

rest of the group. Mean average precision (mAP) over 500 queries is used

to measure the performance of image retrieval system. Note that, in this

dataset, some images are not in a natural orientation, which means they are

rotated by ±90 degrees. Since the proposed networks are trained on images

in normal orientation, following some previous works, we bring all rotated

images in the Holidays dataset manually to the normal orientation. Thus,

the performance of our feature learning strategies is evaluated on the modified

dataset. Figure 3.3 shows some random example images from the Holidays

dataset.

• Training Set for the Holidays Dataset:

In order to train the deep network for retrieval tasks on the Holidays dataset,

another dataset was assembled consisting of 616 classes and around 10,000

images. The images in our training set are randomly selected from the dataset

collected by [61] (containing 672 classes and 213,678 images) for the same

task.

3.3 Experiment Settings 42

Figure 3.3: Sample images from the Holidays dataset.

3.3 Experiment Settings

For Auto-Encoders:

The images in the OT dataset have dimensions of 256 ⇥ 256. However, it

is computationally expensive to use full-scale images as input to a fully connected

neural networks, such as auto-encoders, because a lot of parameters will be involved

during the training which results in high computer memory consumption. Thus, we

apply the relatively smaller size of input images for our experiments to reduce the

number of potential parameters in the network, which we will describe the details

in Section 3.4. Two types of methods to obtain smaller size images and di↵erent

image dimensions are evaluated. In addition, the e↵ects of using gray-scale or color

images are also tested.

For pattern recognition tasks, a good model should be able to make predictions

that are invariant to variations of the same class of patterns. It can be achieved

by training the neural network on large-scale datasets with plenty of examples

containing abundant variations of patterns to be recognized. When training on a

small dataset with only limited training samples, the neural network has the risk

to overfit which a↵ects the classification robustness. One option to tackle this issue

is to augment training data manually by adding replicas of training samples with

some types of data transformation which preserve the class labels [97]. Training

on the dataset with label-preserving transformations will enhance the prediction

invariance and generalization capacity of the neural network. Currently, data aug-

mentation is widely utilized in neural networks aiming to perform recognition tasks,

3.3 Experiment Settings 43

including scene classification. Therefore, after determining the input image sizes

and color types, we augment the training set by adding blurring to original images

and compare the performance generated from the original training set and that

generated from the new augmented training set.

Following that, it is important to compare the performance of utilizing di↵erent

AE network structures, namely di↵erent sizes of hidden layers for auto-encoders.

Based on the learned features, the adopted distance metrics and ranking meth-

ods for KNN classifiers also have significant influences on the classification per-

formance. Thus, we perform experiments to compare di↵erent structures for AE

and distance metrics as well as ranking criteria for KNN. After obtaining learned

features through auto-encoders, we also perform PCA on features with di↵erent

dimensions to check their redundancy.

The L-BFGS described in Section 2.1.4 is adopted to optimize parameters in

AE and SAE due to its advantages, such as stability during the training, no need

to select learning rate, and ease to check convergence. As recommended in oth-

ers’ work, eg. [54, 55], 400 iterations are necessary to ensure the performance of

learned parameters, which is applied to most our experiments. However, it would

be useful to know whether parameters can be further optimized by increasing the

number of iterations of L-BFGS. Therefore, we carry on experiments with di↵erent

optimization iterations to measure the e↵ects on classification.

For SAE, CNN, and Baseline Approach:

Based on the same parameters as auto-encoders, the experiments using SAE

are conducted. Furthermore, as the comparison with AE and SAE both using one-

hidden-layer structure, we implement a simple CNN model and also the baseline

approach on the OT dataset. We apply similar structures for these two networks

which both consist of 1 convolutional layer, 1 nonlinear function layer, 1 pooling

layer, 1 fully connected hidden layer, and 1 classifier layer.

For Multi-scale Networks:

After investigating classification performance of basic deep learning techniques

and the baseline approach, we propose to improve baseline approach by further

exploiting images’ stationary property. To this end, we first replace the traditional

AE involved in baseline approach by SAE to evaluate whether the label information

is beneficial for feature learning in classification tasks. Note that, since random

patches selected from di↵erent areas of image may contain distinct scene objects

which make the features of these patches have di↵erent descriptive power, we carry

on experiments n times based on n di↵erent random patches extracted from each

3.4 Experiments and Results Analysis 44

training image to obtain the average classification performance, where we use n = 5

in this dissertation. Based on the same learned features, di↵erent classification

methods are evaluated, which are softmax regression model, K-Nearest Neighbors

classifier, and Support Vector Machines. In addition, we also perform experiments

using PCA to reduce the dimensions of learned features and employ KNN as the

classifier on features after the dimension reduction. Furthermore, we vary the

structures of SAE for dimension reduction to estimate the e↵ects, such as using

di↵erent hidden units and di↵erent hidden layers.

Since one random patch per training image carries limited statistics of that

image, we propose to extract multiple random patches from each training image to

learning e↵ective and robust filters for feature generating. We conduct experiments

using di↵erent numbers of patches to estimate the performance. Additionally, after

determining the best number of patches extracted from each image, we also carry

on experiments with di↵erent patch sizes and di↵erent image dimensions to test

the e↵ects on these two dimension factors.

Finally, based on experiments about di↵erent patch sizes, we propose a novel

multi-dimensional network that parallels feature learning from di↵erent patch sizes

and then combines the generated features to form the final feature representations

for images.

3.4 Experiments and Results Analysis

In this section, we describe detail experiments conducted for measuring the clas-

sification performance of di↵erent techniques and also provide the analysis for the

experiment results.

3.4.1 Experiments with Auto-Encoders

3.4.1.1 Experiments on Di↵erent Input Images

In order to obtain a smaller size of the input image, one option is to extract a

patch to represent that image. In terms of this idea, with the assumption about

the patch located in the center of the image may hold important information, we

try to extract one patch from the center of each image and use those patches as

input data. Another option to reduce the image dimension is to resize the image

to a lower resolution. Here, The dimension of the patches or smaller images chosen

for experiments are: 30⇥30, 50⇥50, and 100⇥100. Besides, the gray-scale images

are used instead of color images because color images have 3 times more pixels

3.4 Experiments and Results Analysis 45

than gray-scale images. The results of di↵erent image scale reduction methods and

image dimensions based on the same hidden layer size are shown in Table 3.1.

Table 3.1: Accuracy of di↵erent scale reduction methods and image sizes.

Patch types Patch sizes
30 ⇥ 30 50 ⇥ 50 100 ⇥ 100

Central patch 24.0% 34.0% 33.0%
Resized patch 40.0% 40.5%

From the table, it can be seen that: 1) resized patches perform better than the

image patches extracted from the center of images for the same patch size. The

reason for this may be because the patch obtained by resizing the whole image can

hold the general information from di↵erent locations of the image while the patches

extracted from image center can only carry information of the central region of the

image. 2) images of size 50 and 100 perform much better than that of size 30. In

terms of the computational e�ciency and the similar performance, patch of size

50 ⇥ 50 is preferable for experiments.

Whereas, when doing classification or detection tasks, it has been shown that

the performance can be improved by using color information [98]. Thus, leveraging

color features rather than only gray-scale intensities of images can be beneficial

to scene classification. The RGB descriptors of images are directly used here to

provide color information by simply unrolling and concatenating three channels of

features. Experiment results show that when using auto-encoder with the same

number of hidden units, 50 ⇥ 50 resized color images outperform the gray-scale

ones by 1.0%. Thus, the following experiments are based on resized color images

of dimension 50 ⇥ 50.

3.4.1.2 Experiments on Augmented Training Set

In this dissertation, the OT dataset is used to measure the performance of feature

learning algorithms for scene classification. However, it is a relatively small dataset

(only composed of 2688 images in total) for training neural networks. Thus, it is

necessary to augment the training samples manually to improve the robustness of

learned features and the generalization ability of neural networks, although the

augmented images may be relatively similar to those original ones. The data aug-

mentation method chosen in this OT dataset is adding blurring to the original

images. Here, the Gaussian blur (or Gaussian smoothing) is applied to blur the

image by a Gaussian function. The Gaussian function [99], which also expresses

the normal distribution, in two dimensions is defined as:

3.4 Experiments and Results Analysis 46

Original Images Gaussian Blurred Images

Figure 3.4: An example of original image and its Gaussian Blurred image.

G (x, y) =
1

2⇡�2
e

�x

2+y

2

2�2
. (3.1)

The filter used for Gaussian Blur in the experiments is a square matrix of

size [9,9] and the standard deviation � utilized is 7. Applying the Gaussian blur

to an image is equivalent to convolving the image with the Gaussian function.

Figure 3.4 shows an example of original image (belonging to class ‘insidecity’) and

its corresponding Gaussian Blurred image from the OT dataset.

With the data augmentation implementing on only the training set images,

the new training set consists of both original images and blurred images has 4576

images in total. Experiment results show that based on the same image dimensions

and the same AE parameters, the performance of augmented training set exceeds

that of original training set by around 1.5%. Therefore, the augmented training set

is selected to be used for all following experiments when doing scene classification

on the OT dataset.

3.4.1.3 Experiments on Di↵erent AE Structures and KNN Methods

Regarding the number of hidden units of AE, we choose to vary among three values:

50, 100, 200. As for the KNN classifier, given feature vectors of di↵erent observa-

tions, how to e↵ectively compute the distance between two vectors is also crucial

for the final classification performance. Hence, we use the Manhattan distance as

the alternative of Euclidean distance. According to [100], the Euclidean distance

of two points measures the length of the line segment connecting them while the

3.4 Experiments and Results Analysis 47

Manhattan distance between two points is the sum of the absolute di↵erences of

their Cartesian coordinates. The experiment results about di↵erent hidden layer

units and di↵erent distance metrics are shown in Table 3.2.

Table 3.2: Accuracy of di↵erent distance metrics and AE structures.

Distance metrics Number of hidden units
50 100 200

Euclidean distance 41.5% 46.0% 52.5%
Manhattan distance 46.5% 51.0% 57.0%

As can be seen, in the feature space learned by auto-encoder, the Manhat-

tan distance is more preferable than Euclidean distance to measure the di↵erence

between two feature vectors.

Besides the distance metric, another significant aspect about KNN is the voting

strategy after obtaining the ranking list for a certain testing example that shows the

ordering of its nearest training examples from close to far. In above experiments,

the voting strategy applied is Majority Vote, which simply counts the total number

of votes for each query examples without taking into account the rank and distance

information of nearest neighbors. Then, the final prediction for a test image is the

class that appears most common among its k nearest neighbors. However, it is

vital to leverage the rank and distance information of nearest neighbors presented

in the retrieval list and also have a weighting strategy for each nearest neighbor

to contribute properly to the final prediction. To this end, the adjusted version of

Adaptive Criteria described in Section 2.2.2 is employed. Using Manhattan dis-

tance for ranking, the comparison between Majority Vote and my adjusted version

of Adaptive Criteria is shown in Table 3.3.

Table 3.3: Accuracy of di↵erent voting criteria and AE structures.

Voting criteria Number of hidden units
30 50 200

Majority vote 43.0% 46.5% 57.0%
Adjusted adaptive vote 52.0% 57.0% 58.0%

As is presented in the table, adjusted Adaptive Criteria performs much better

than simply voting without considering rank and distance of nearest neighbors,

even with less hidden units, such as 30. Regarding the number of hidden units,

it is obvious that more hidden units tend to generate more representative features

and result in better classification accuracy. However, after changing voting crite-

3.4 Experiments and Results Analysis 48

0 5 10 15 20 25 30 35 40 45 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PCA for images with 50D features

Components

Variance

0 20 40 60 80 100 120 140 160 180 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
PCA for images with 200D features

Components

Variance

Figure 3.5: PCA plots for 50D and 200D features: Variance VS. Components.

rion, 200D hidden features do not outmatch 50D ones too much but have much

higher computational cost. Thus, it can be inferred that 200D features are not all

necessary for describing the image.

To measure whether the features are redundant, PCA presented in Section 2.5.1

can be applied. Referring to the Equation 2.44, the variance that each component

of features accounts for can be computed. Figure 3.5 displays how much variance

each component accounts for in the 50D and 200D features. Concretely, in the PCA

figure of 200D features, the first 46 components hold around 96.0% variance of all

components, which means the 200D features are too redundant when describing the

image compared with 50D features. Thus, Considering the accuracy, computational

e�ciency, and redundancy of di↵erent sizes of hidden features, 50 hidden units

network is selected.

3.4.1.4 Experiments on Di↵erent Optimization Iterations

In this dissertation, the L-BFGS is selected to train the AE and SAE models. The

experiments above are trained with 400 iterations. For comparison, 700 iterations

are carried on to optimize the parameters. After experiment, the accuracy rate

is slightly enhanced by 1.0%. To check the convergence of two training processes,

the figures displaying ‘Overall cost VS. Optimization iterations’ are necessary. Fig-

ure 3.6 shows the plots of 400 and 700 iterations of optimization.

As can be seen from the figure, the final cost of 400-iteration optimization for

the overall cost function is around 24 and the final cost of 700 iterations training is

around 22, which reveals that optimization is proceeded very slowly after 400 iter-

ations. Whereas, along with the 1.0% increase in accuracy rate, the training with

700 iteration consumes nearly twice time as that with 400 iterations. Therefore,

3.4 Experiments and Results Analysis 49

0 50 100 150 200 250 300 350 400 450
20

25

30

35

40

45

50

55

60

65

70
400 Iterations: Overall Cost VS. Number of Iterations

Cost

Iterations

0 100 200 300 400 500 600 700 800
20

25

30

35

40

45

50

55

60

65

70
700 Iterations: Overall Cost VS. Number of Iterations

Iterations

Cost

Figure 3.6: Overall cost VS. Optimization iterations.

400 iterations are selected for L-BFGS optimization algorithm.

3.4.2 Experiments with Stacked Auto-Encoders

Given the dataset with a class label for each image, such as the OT scene dataset,

it would be good if we can leverage the label information to improve the features

learned by an unsupervised learning algorithm. To this end, a softmax classifier

can be stacked on the top of auto-encoder.

In terms of previous experiments, the hidden layer with 50 units is used. With

the 50⇥ 50 color input images, the overall network structure applied here is 7500-

50-8. The accuracy rate for classifying the OT dataset through the stacked auto-

encoder (described in Section 2.3) is 59.0%, which is better than that through only

traditional auto-encoders introduced in Section 2.1 (57.0%). Thus, SAE will be

mainly considered in the following experiments.

3.4.3 Experiments with Convolutional Neural Networks

Due to the advantages of convolutional neural networks, it is worth to trying CNN

model on the OT dataset. Since only simple AE and SAE are used in previous

experiments, it is fair to employ relatively simple CNN architectures. Thus, the

network utilized here includes 1 convolutional layer, 1 nonlinear function layer, 1

pooling layer, 1 fully connected layer, and 1 loss layer. Concretely, given training

images of size 50 ⇥ 50, the structure and parameters are selected as follows based

on experiments on cross-validation set:

- Convolutional Layer: filter size is chosen as 8 ⇥ 8 that are initialized with

random values drawn from the standard normal distribution. No padding

3.4 Experiments and Results Analysis 50

pixels added outside of the image is to constrain convolution processes to be

operated only within the image. During the convolution, the filter slides by

a stride equal to 1.

- Nonlinear Function Layer: The nonlinear function chosen to use here is Rec-

tified Linear Units (ReLU).

- Pooling Layer: The pooling size is assigned to 5 and the pooling regions are

non-overlapped with each other.

- Fully Connected Layer: As is shown in previous experiments, hidden layer

with 50 units is preferable for the auto-encoders to represent the image. Thus,

50 units are applied to the fully connected hidden layer.

- Loss Layer: Softmax classifier followed by a logistic loss function is used for

classifying images and training the network.

Finally, the CNN model with 1 convolutional layer yields performance of 48.5%

on the OT dataset.

3.4.4 Experiments with Baseline Approach

The baseline approach works by extracting one random patch from each input

image and learning patch features through unsupervised learning techniques, such

as auto-encoders. After obtaining the learned patch features, convolution and

pooling are applied to generate feature representations. Since baseline approach has

the similar structure as the simple CNN applied above, we utilize the same patch

size (filter size) and pooling dimension, while changing the non-linear activation

function from ReLU to sigmoid function as described in [54]. After convolution and

pooling, an AE model with 50 hidden units is applied to reduce the dimension of

generated feature representations. The performance of baseline approach is 52.5%

on the OT dataset.

3.4.5 Comparison among Feature Learning Techniques

Based on the experiments shown above, Table 3.4 displays the comparison among

four applied learning techniques using the same 50D generated features for classi-

fication.

As can be seen from the table, SAE outperforms the other three learning al-

gorithms. The comparison between AE and SAE illustrates that using the label

3.4 Experiments and Results Analysis 51

Table 3.4: Comparison among AE, SAE, CNN, and baseline approach.

Methods AE SAE CNN Baseline Approach
Accuracy rate 57.0% 59.0% 48.5% 52.5%

information to fine-tune parameters already learned by auto-encoder is beneficial

to image classification. Additionally, the comparison between CNN and baseline

approach shows that the filters learned through auto-encoders based on the sta-

tionary property of images better that learned through CNN model with similar

network structures. The possible reasons why CNN does not perform well are: 1)

the OT dataset does not have enough training samples for CNN to learn e↵ective

and discriminative features for images, 2) the structure of employed CNN is rela-

tively simple to learn abstract features. In terms of these results, it would be worth

trying to improve the baseline approach through replacing AE by SAE due to the

better performance of SAE on classification tasks.

3.4.6 Experiments with Proposed Multi-scale Networks

3.4.6.1 Baseline Approach with SAE

Given the color images of 50 ⇥ 50 dimension, we first extract one random patch

of size 8 ⇥ 8 from each training image and unfold the 2D patches to 1D vectors.

Before feeding them to SAE, ZCA whitening is applied to patches. Then, train

parameters for the ZCA whitened patches using SAE with the structure of 192-75-

8, which results in W and b of the encoder with the dimension of 75⇥192 and 75⇥1

respectively. Therefore, the learned filter maps have 75 kernels of size 8 ⇥ 8 ⇥ 3.

After convolution, the mean pooling of dimension 4 ⇥ 4 is applied to non-

overlapped regions of convolved feature maps, which results in 10⇥ 10⇥ 75 pooled

feature maps. Following that, based on the same structure as in baseline approach,

we apply SAE for dimension reduction with structure 7500-50-8 to further learn

compact feature representations.

The performance of softmax and KNN classifiers are compared based on learned

50D features. Furthermore, PCA is applied to further reduce the dimension of

learned features with retaining 98% of the variance. The final dimension of PCA

reduced features is around 13D, which is much lower than 50D. Then, KNN is

applied on 13D features. In addition, we implement Spectral Hashing (SH) [101]

using Hamming distance on 50D features. SH is an e�cient method of Seman-

tic Hashing [11] which aims to compact binary codes of data points so that the

Hamming distance can be used to measure the semantic similarity between two

3.4 Experiments and Results Analysis 52

binary codes. As a comparison, SVM is also tested to classify the learned 50D

features using di↵erent nonlinear kernels, such as Radial Basis Function kernel,

Polynomial kernel, and Sigmoid kernel. However, the performance does not change

much (±1%) by varying the kernels for SVM. Table 3.5 shows the results obtained

through these five classification methods, where the accuracy rates are the average

value computed from 5 di↵erent experiments.

Table 3.5: Results of di↵erent classification methods.

Classification methods Softmax KNN PCA + KNN SH SVM
Accuracy rate 69.1% 69.4% 72.0% 63.8% 17.0%

As is displayed in the table, the performance of KNN is slightly higher than

softmax classifier. When using PCA algorithm, the performance can be signifi-

cantly improved compared with directly applying learned features to KNN. While

the Spectral Hashing does not perform well compared with softmax and KNN,

which may be because the method that SH utilized to learn compact binary codes

is not suitable to describe deep neural features in our tasks. As for SVM classifier,

an important machine learning algorithm, it fails to e↵ectively separate di↵erent

features in the feature space and perform classification on the features learned

through deep learning techniques.

In addition, di↵erent numbers of hidden units or structures of SAE for dimen-

sion reduction are evaluated, such as using less hidden units or deeper networks.

The results are shown in Table 3.6, where the baseline structure of SAE for dimen-

sion reduction is 7500-50-8.

Table 3.6: Results of di↵erent structures of SAE for dimension reduction.

SAE structure Single hidden layer Two hidden layers
50 30 20 300-50 300-30

Accuracy rate 69.1% 69.7% 53.7% 72.5% 73.7%

As can be seen from the table, for single-hidden-layer or two-hidden-layer struc-

tures, 30 hidden units in the last hidden layer performs better than 50 hidden units.

While when using less hidden units, such as 20, the performance is bad. Compar-

ing between the structures of single hidden layer and two hidden layers, the latter

exceeds the former which means deeper networks can yield better feature represen-

tations that are more abstract and discriminative.

3.4 Experiments and Results Analysis 53

3.4.6.2 Baseline Approach with Multiple Patches

In order to evaluate the e↵ects of using multiple patches, we perform experiments

using a di↵erent number of random patches, i.e. 2, 3, 4, 5, 6, 9 patches per image,

based on baseline structure of SAE for dimension reduction and softmax classifier.

Table 3.7 lists the experiments results of a di↵erent number of patches used. From

the table, it can be seen that extracting more patches from each training image

can roughly generate better results, which proves that more patches per image can

lead to more robust and e↵ective patch features. Therefore, we choose to use 6

patches per image for the following experiments.

Table 3.7: Results of di↵erent number of patches per training image.

Number of patches 1 2 3 4 5 6 9
Accuracy rate 69.1% 70.1% 74.9% 74.2% 74.6% 76.8% 76.7%

Based on Table 3.6 and Table 3.7, SAE for dimension reduction with two hidden

layers and 6 random patches per image are utilized to evaluate performance with

regard to di↵erent patch sizes and di↵erent input image dimensions. In order to

achieve similar feature dimension, the parameters for convolutional and pooling

operations are changed slightly. In addition, KNN is applied to these experiments

which can directly reflect the influence caused by changes of learned features when

varying patch and input image sizes. Concretely, the options for input image

dimensions are: 50⇥ 50 and 100⇥ 100. The extracted patch sizes are: 4⇥ 4, 6⇥ 6,

8 ⇥ 8, 16 ⇥ 16, and 24 ⇥ 24. Table 3.8 presents these experiment results.

Table 3.8: Accuracy of di↵erent image sizes and patch sizes.

Image sizes Patch sizes
4 ⇥ 4 6 ⇥ 6 8 ⇥ 8 16 ⇥ 16 24 ⇥ 24

50 ⇥ 50 72.5% 72.7% 74.6% 71.6%
100 ⇥ 100 74.7% 76.6% 76.4% 75.1%

Some points can be analyzed from the table. The first point is when the patch is

too small or too large, the performance is bad. For example, regarding the 50⇥ 50

image size, the performance of patch size 4 ⇥ 4 and 16 ⇥ 16 are much worse than

size 8⇥ 8. The probable reasons for this phenomenon are: 1) the learned filter will

contain less information if the patch size is small, 2) when the patch is too big,

namely the learned filter will hold large amount of information, the information of

activation output after convolution process will be not that much, which results in

3.4 Experiments and Results Analysis 54

the learned features being not discriminative. The second point is the larger input

image performs better than the smaller input image. As is shown in the table,

using the same patch size, the performance of 100 ⇥ 100 images exceeds 50 ⇥ 50

images by 2-4 percent, which demonstrates that the larger input images carry more

information than the smaller input images, which is crucial for feature learning for

classification tasks. Therefore, in the following experiments, 100 ⇥ 100 images are

used as input for feature learning model.

3.4.6.3 Multi-scale Networks

To build multi-scale networks for feature learning, we choose to combine features

learned from three patch sizes, which are 6 ⇥ 6, 8 ⇥ 8, 16 ⇥ 16. In previous exper-

iments, 75 kernels are used for convolution and eventually obtain 7500D feature

representations after pooling. In order to keep features with the same dimension,

before performing multi-scale feature learning, we modify the number of features

to 25 for each feature learning network. Thus, after feature learning through three

paralleled networks, three 2500D features will be generated, which can then be

concatenated to form 7500D features. The performance of each feature learning

network aiming to generate 2500D features is displayed in Table 3.9. We then

parallel all three networks into a single multi-scale network to learn the combined

features and then feed the new features to SAE model with structure 7500-300-30-

8. Finally, KNN is adopted on 30D features for classification. The accuracy rate

for combined features from the multi-scale network is also presented in the same

table.

Table 3.9: Results of less number of kernels and combined features.

Patch sizes 6 ⇥ 6 8 ⇥ 8 16 ⇥ 16 Combined features
Accuracy rate 73.1% 73.8% 75.0% 76.9%

Comparing this table with Table 3.8, we can see that the performance is de-

creased when changing the number of kernels from 75 to 25 for all three patch sizes,

which can be concluded that less number of filters for convolutional operations will

generally yield slightly worse feature representations. However, through combining

features learned from three paralleled networks based on di↵erent patch sizes, the

performance is improved, which is also slightly higher than any accuracy rate gen-

erated by single patch size network with the number of features of 75. The reason

why the performance of multi-scale network does not exceed the method using 6

random patches too much may be because the loss during the feature generation

3.5 Conclusions 55

when reducing the dimension of the kernel from 75 to 25 for each size of patches.

3.5 Conclusions

In this chapter, we have evaluated the performance of the proposed multi-scale

network for outdoor scene classification and also investigated some basic deep

learning techniques, which are traditional auto-encoders, stacked auto-encoders,

convolutional neural networks, and the baseline approach based on the station-

ary property of images. The experiment results of these methods are shown in

Table 3.10, where we denote baseline approach as BA.

Table 3.10: Comparison between other techniques and proposed methods.

Methods AE SAE CNN BA Multi-scale Network
Accuracy rate 57.0% 59.0% 48.5% 52.5% 76.9%

According to the experiment results, it can be seen that SAE performs moder-

ately better than traditional AE, which means using label information is beneficial

for classification tasks. In addition, the comparison between CNN and baseline

approach illustrates that features learned through auto-encoders based on the sta-

tionary property of images better that learned through CNN model with similar

network structures. Furthermore, our proposed feature learning networks consid-

erably exceeds all basic learning techniques, including the baseline approach that

inspires our methods, which demonstrates that based on stationary property of im-

ages, feature representations learned from multiple random patches and multiple

patch dimensions surpass the baseline approach in [54,55] that learns features only

based on one random patch per image.

Chapter 4

Spatial Deep Networks for

Feature Learning

In this chapter, we aim to further improve the baseline approach and also the

multi-scale networks proposed in Chapter 3 that both utilize random patches ex-

tracted from arbitrary areas of the image. To this end, we propose a novel Spatial

Deep Network (SDN) to learn compact but discriminative feature representations

for images. By exploiting the spatial layout of the image, SDN performs multi-

level partitions and constrains the random patch extraction to be performed in

di↵erent areas of the image in order to e↵ectively restrict the patches to hold the

characteristics of di↵erent regions of that image.

Specifically, inspired by Spatial Pyramid scheme [28], the SDN works by repeat-

edly partitioning the image into sub-regions, extracting one random patch from

each sub-region, and then learning patch features that serve as filters to generate

the feature representations. After obtaining features for all regions at all levels,

they are concatenated to form the feature representations for the input image. In

this way, features learned through multi-level SDN can incorporate both global

descriptors and local spatial information.

After evaluating the performance of SDN on the OT dataset, we then com-

pare our methods with other widely used classification techniques, such as Bag-

of-Features, Spatial Pyramid, and Convolutional Neural Networks. Furthermore,

the proposed SDN is also applied to content-based image retrieval on the Holidays

dataset to evaluate the applicability of feature representations learned through our

method.

56

4.1 Spatial Deep Networks 57

Patch
Extraction

Filter
Learning

Feature
Generation

Feature
Combination

Dimension
Reduction

Spatial
Pyramid

Level 1

Level 2

Figure 4.1: Structure and feature learning pipeline through the proposed two-level
Spatial Deep Network. The input image is continually partitioned into 9 sub-
regions and one random patch is extracted from each to learn filters. Following the
filter learning, convolution and pooling are performed to generate features. After
obtaining features from di↵erent level of partitions, the global and local features
are concatenated and fed to a stacked auto-encoder to learn final compact feature
representations.

4.1 Spatial Deep Networks

The proposed Spatial Deep Network takes advantage of the learning ability of

stacked auto-encoders to learn filters and the convolutional processes to generate

feature representations for images. During the patch extraction procedure, the

spatial pyramid method is exploited to improve the baseline approach described

in [54, 55]. By implementing multi-level SDN, the learned compact feature repre-

sentations contain both global descriptor and local spatial layout information for

the images.

At a high-level, SDN performs the following feature learning pipeline: 1) Patch

Extraction, 2) Filter Learning, 3) Feature Generation, 4) Feature Combination,

5) Dimension Reduction, where the methods of step 2, 3, 5 are the same as that

described for multi-scale networks in Section 3.1. Therefore, we focus on describing

the step 1 and 4 below. Figure 4.1 displays the pipeline of the proposed method.

Patch Extraction:

In SDN, we employ spatial pyramid scheme to aggregate both global and lo-

cal features of an image. Di↵erent from the patch extraction method used in the

baseline approach and multi-scale networks, we propose to exploit the spatial lay-

out of the image by constraining the random patch selection to be performed at

4.1 Spatial Deep Networks 58

di↵erent areas of the image. Specifically, given an input training image, instead of

randomly extracting patches from the entire region of the image, we first partition

the image into N sub-sections (Partition Level 1) and then perform the random

patch extraction within each sub-section, where we use N = 9 in our experiments.

By using patches selected from di↵erent areas of the image to learn patch features,

the features can be more robust and representative to describe the statistics of the

whole image. After filter learning based on extracted patches in Level 1, filters are

used to convolve with each original image to generate global feature representations

for those images.

In order to learn local features for each image part, nine patches are extracted

in the same way by further partitioning that image part into nine sub-regions

(Partition Level 2). The same patch extraction and filter learning methods are

then applied to all image parts. Following the filter learning processes for each

image part, filters are convolved with corresponding image part to generate local

features for that part.

Feature Combination:

We employ multi-level feature learning in order to generate feature representa-

tions for both the entire image (Global Features) and all image sub-sections (Local

Spatial Features). After that, global and local features are combined. In this

dissertation, two feature combination strategies are considered:

Fifty-fifty: global feature occupies half of the final representation and the local

features take up the rest where all the local features have the same dimensions.

This combination strategy emphasizes the global features and takes into account

the spatial layout of the images at the same time.

Uniform: global feature has identical dimension with each local feature. This

strategy addresses the local features and spatial layout of the images and considers

the global features as a relatively small part within the feature representations.

Overall Feature Learning Pipeline of SDN:

Considering Spatial Deep Networks with one convolutional layer, the feature

learning pipeline is described as follows:

1. Level 1: Given an input image, partition it into 9 image parts and extract one

patch from each. Use extracted patches to learn features that will be used

as filters to convolve with the whole image in order to yield global feature

representation for the image.

2. Level 2: Further partition each of the image parts from the previous level

4.1 Spatial Deep Networks 59

Input Image Level 1 Level 2

9 Patches
SAE

Filters
Conv.

Global Features

9 Patches
SAE

Filters
Conv.

Repeat processes in all sub-regions

9 Local Features

Compact Features

SAE

Figure 4.2: Example of feature learning through a two-level SDN.

into 9 sub-regions and extract one patch from each. Feed the patches to SAE

to learn filters that are used to convolve with only the corresponding image

part to generate local features for that image part. Apply the same processes

to other image parts.

3. Level 3: Repeat the processes in Level 2 until partitioning the image into

desired level.

4. Concatenate features learned from all levels of image and sub-regions one

after another to construct the feature representation for the input image.

5. Perform dimension reduction by feeding the concatenated features to another

SAE model to learn compact feature representations for the input image.

Figure 4.2 displays an example of feature learning process through a two-level

SDN with one convolutional layer where the Fifty-fifty feature combination strategy

is applied.

If additional convolutional layers are added to the pipeline, the following multi-

ple convolutional processes will be performed in each of the levels depicted above.

A three-convolutional-layer network is used as an example:

1. Partition and extract patches from each input training image or image part.

Use extracted patches to learn filters through an SAE model. Then convolve

4.2 Experiment settings 60

the learned filters with the input image and pool the convolved feature maps

to get the final activations for the first convolutional layer.

2. Utilize the obtained activations from the previous convolutional layer as in-

put to the second convolutional layer. Conduct the same patch extraction,

filter learning, and feature generating strategy to obtain activations for this

convolutional layer.

3. Forward pass the pooled feature maps from the previous layer to the third

convolutional layer by performing the same processes to acquire the pooled

feature maps, which are regarded as the final feature representations for the

input image or image part.

4.2 Experiment settings

In this section, based on the same augmented OT dataset with 100 ⇥ 100 images

used in Section 3.4.6, we first evaluate and analyze the e↵ects of proposed Spatial

Deep Networks with di↵erent levels and structures for scene classification based on

the Fifty-fifty feature combination strategy. Concretely, we perform experiments

using: 1) one/two-level SDN with one convolutional layer, 2) one/two-level SDN

with three convolutional layers. Following that, we measure the performance of

two feature combination strategies using the selected best SDN structure.

We then compare the performance of the proposed method to other scene clas-

sification techniques, including BoF, SP, CNN, and also the baseline approach. We

also compare the performance of these techniques for classification when using the

same feature dimensions as the features generated by our method.

In addition, the proposed SDN has also been applied to the Holidays dataset for

content-based image retrieval task. We compare our image retrieval performance

with some state-of-the-art techniques, such as BoF, FV (Fisher Vector), and VLAD

(Vector of Locally Aggregated Descriptors).

4.3 Experiments for Classification

4.3.1 One/two-level SDN with One Convolutional Layer

One-level SDN with One Convolutional Layer:

Given the 100 ⇥ 100 color training images, we partition them into nine image

parts (3 rows and 3 columns) and extract one 6 ⇥ 6 patch from each of them.

4.3 Experiments for Classification 61

All the extracted patches are fed to an SAE with structure 108-75-8 to learn the

parameters {W, b} of encoder part that will then be transformed and leveraged as

filter maps for convolutional operations. The learned filter maps have 75 kernels

of size 6 ⇥ 6 ⇥ 3.

After convolution, the mean pooling of dimension 9 ⇥ 9 is applied to the non-

overlapped regions of convolved feature maps, which results in 10⇥ 10⇥ 75 pooled

feature maps. Following that, based on experiments conducted on cross-validation

set, an SAE model with structure 7500-300-50-8 is applied to further learn com-

pact feature representations. Finally, the softmax classifier is employed to perform

classification on the 50D features.

In addition, two experiments using the same parameters are compared here:

1) the baseline approach that extracts only one random patch from each training

image described in Section 3.4.4, 2) the baseline approach using stacked auto-

encoders to learn filters based on multiple random patches, especially 9 patches per

image, which is shown in Section 3.4.6. The results are displayed in the Table 4.1.

Two-level SDN with One Convolutional Layer:

In order to incorporate local spatial layout information, the two-level SDN is

implemented:

Global features: Computation of the first level of two-level SDN is the same as

the single-level SDN. Thus, we use the same parameter setting except changing the

number of filters from 75 to 36 in order to achieve similar feature dimension after

combining global and local features. Applying the same learning and convolving

strategies, a 3600D global feature will be obtained after level 1 processes.

Local features: Regarding the level 2, we extract one random patch also with

dimension 6 ⇥ 6 for each sub-section of 33 ⇥ 33 image part and feed all patches

to an SAE model to learn 12 filter kernels for convolution. 5 ⇥ 5 non-overlapped

mean pooling is used to aggregate the statistics within convolved feature maps. As

a consequence, a 400D feature vector for each image part will be acquired. Finally,

concatenate 9 feature vectors from di↵erent image parts to form the spatial layout

features for the input image.

Combine global and local features: Combine the learned 3600D global features

with the nine 400D local features and feed to an SAE with the structure of 7200-

300-50-8 to learn compact hierarchical features which consist of both global and

local information for each image. The classification performance of this experiment

is shown in the Table 4.1.

As can be seen from the table, the baseline approach using SAE to learn filters

and leveraging 9 random patches per image exceeds the original baseline approach

4.3 Experiments for Classification 62

Table 4.1: Results of SDN with one convolutional layer.

Method Accuracy rate
One-level SDN 78.5%
Two-level SDN 79.0%

Baseline approach 52.5%
Baseline approach with 9 patches 76.7%

that only extracts one random patch per image. Moreover, SDN that exploits

spatial layout of images and utilizes patch extraction strategy with location con-

straints outperforms random patch extraction strategy. In addition, although the

patches extracted through single-level SDN carry the statistics of di↵erent locations

of images, the features generated by convolving learned filters with entire images

are global descriptors for the input images. When performing two-level SDN, the

accuracy rate slightly betters that of single-level SDN, which demonstrates the

incorporation of both global and local features enhances the classification perfor-

mance for scene images.

4.3.2 One/two-level SDN with Three Convolutional Layers

One-level SDN with Three Convolutional Layers:

In order to obtain higher-level abstract feature representations, we deepen the

SDN to having the similar structure with the benchmark CNN model for the

CIFAR-10 dataset [94] which consists of three convolutional layers, 1 fully con-

nected hidden layer and 1 softmax loss layer.

Concretely, we use patch size of 5⇥5 for the convolutional operations and 2⇥2

with the stride of 2 pixels for either max or mean pooling operations for all three

convolutional layers. The number of features applied to each convolutional layer

is 20, 30, 50, respectively. Hence, after being passed through three convolutional

layers, the final dimension of feature maps are 9⇥9⇥50. Then, SAE with structure

4050-300-8 is applied. The results of experiments based on 300D features are shown

in Table 4.2.

Two-level SDN with Three Convolutional Layers:

When implementing two-level SDN, we apply the same parameter setting as the

single-level SDN shown above for global feature processing. While for local feature

generating, the same parameters are employed except that the patch size is changed

to 2⇥ 2. The numbers of hidden units of SAEs after the third pooling layer for the

global and local pass are 450 and 50 respectively. Therefore, after the combination

4.3 Experiments for Classification 63

of global and local features, the concatenated representations are of 8100D if we

use features from the first layer of SAE and 900D when using features from the

hidden layer of SAE. In terms of the experiment results, leveraging hierarchical

features concatenated from the first layers of SAE (8100D) is slightly better than

the 900D features. Thus, the comparison with other methods will be based on the

performance of 8100D hierarchical features.

In CNNs, the traditional way of pooling is to perform in the non-overlapping

regions. However, applying pooling operation with overlapping can reduce the

error rates in classification tasks and make the learning model slightly less likely to

overfit [39]. Therefore, we also attempt overlapping pooling for SDN. Concretely,

we use 3⇥3 pooling region, the stride of 2 pixels, and padding 1 row and 1 column

of zeros at the bottom and right of images respectively. The results are shown in

Table 4.2.

Table 4.2: Results of SDN with three convolutional layers.

Method Feature dimension Accuracy rate
One-level SDN 300 82.5%

Two-level SDN
50 83.5%
300 84.0%

Two-level SDN with 50 84.0%
overlapping pooling 300 84.5%

As is shown in the table, deeper network significantly improves classification

performance compared to Table 4.1, which illustrates the higher-level abstract fea-

tures of scene images better the features learned from shallow networks. Further-

more, the use of overlapping pooling strategy slightly increases the accuracy rate

by 0.5% with respect to that of non-overlapping pooling.

4.3.3 Comparison between Feature Combination Strategies

The experiments of the two-level SDN shown above are all based on the Fifty-fifty

feature combination strategy. In this section, we focus on comparing both strate-

gies. To this end, we slightly change the convolutional parameters for both Level

1 (Global Pass) and Level 2 (Local Pass) to achieve similar final feature dimen-

sions when performing the Uniform feature combination strategy. The comparison

of two feature combination strategies through two-level SDN with three convolu-

tional layers are shown in Table 4.3. As is displayed in the table, using the Uniform

feature combination strategy yields better performance, which illustrates that the

4.3 Experiments for Classification 64

local features and spatial layout information are significant for describing outdoor

scene images.

Table 4.3: Comparison of feature combination strategies.

Feature combination method Feature dimension Accuracy rate

Fifty-fifty strategy
50 84.0%
300 84.5%

Uniform strategy
50 86.0%
300 87.5%

4.3.4 Comparison with Other Methods

We compare the performance of the proposed SDN with some widely used tech-

niques, such as the Bag-of-Features and Spatial Pyramid. As is demonstrated

in [2,29], the train/test spilt on the OT dataset applied for the BoF and SP meth-

ods is 2000 images for training and the rest 688 images for testing. Although

the train/test split is not exactly the same to what we are using, the comparison

of our proposed method with these two state-of-the-art techniques can still show

some important things. Furthermore, we also perform the CNN model (used for

the CIFAR-10 dataset) on the OT dataset based on the same train/test split as

our SDN experiments. The comparison of scene classification performance using

di↵erent techniques is shown in Table 4.4.

Table 4.4: Comparison with state-of-the-art techniques.

Method Feature dimension Accuracy rate

Two-level SDN
50 86.0%
300 87.5%

Multi-scale networks 50 76.9%
Baseline approach 50 52.5%

CNN 64 67.0%
BoF [29] 1500 83.8%
SP [2] 31.5K 87.0%

From these results, it can be seen that the proposed SDN considerably sur-

passes the proposed multi-scale network and baseline approach that leverage ran-

dom patches, which demonstrates that using location constraints makes extracted

patches carry more necessary statistics of scene images. Additionally, our SDN sig-

nificantly outperforms the CNN model when using similar convolutional structures

4.4 Experiments for Image Retrieval 65

and feature dimensions, which elucidates that feature representations containing

both global information and spatial layout of the image notably exceed features

learned from traditional CNN models on the OT dataset.

In order to achieve the best accuracy rate, BoF generates features using 1500

visual words and the Spatial Pyramid represents images with 31,500D descriptors.

On the contrary, our proposed SDN achieves competitive performance but using

features with much lower dimensions, that is 300D.

Finally, for the comprehensive evaluation, we compare the performance of our

method to that of BoF and SP using the same 300D features. The comparison is

shown in Table 4.5. Comparing the results shown in Table 4.5 and Table 4.4, we

can see that the classification performance of BoF and SP considerably drops due

to the significant reduction of feature dimensions applied. Thus, it can be inferred

that the features generated by our method are more discriminative than the BoF

and SP descriptors, especially in low-dimensional feature space.

Table 4.5: Comparison of features with the same dimension.

Method Accuracy rate
Two-level SDN 87.5%

BoF 79.0%
SP 81.5%

4.4 Experiments for Image Retrieval

In order to evaluate the robustness of proposed feature learning strategies, a good

way is to check the performance when applying the strategies to other commonly

used dataset and compare with the widely used techniques on that dataset. In this

dissertation, besides the outdoor scene classification on OT dataset, we implement

our SDN to content-based image retrieval task on the Holidays dataset that also

focuses on scene images. Content-based image retrieval task is defined as retrieving

all images that contain similar objects from a large image dataset, based on a query

image of that object. According to [61], the performance of content-based image

retrieval system crucially depends on the feature representation and the similarity

measurement.

To perform content-based image retrieval, we first resize the images in the

training set and the holidays dataset to 100 ⇥ 100, which is the same as that

used for the OT dataset. The proposed spatial deep networks are trained on the

collected training set. Then, all the images in the Holidays dataset are projected to

4.5 Conclusions 66

feature space using learned parameters. To obtain the ranking list for each query

image, the Manhattan distance is applied to compute the similarities between two

feature representations. Based on experiments performed on cross-validation set,

the final dimension of our feature representation is 700D. The comparison of our

performance and other state-of-the-art techniques are shown in Table 4.6, where the

performance of BoF, FV, and VLAD are described in [18] and the mean average

precision (mAP) is used to measure the retrieval performance. Here, the mAP

represents the mean of the average precision scores for each query. Note that, the

training of these three descriptors are performed on the training set consisting of

around 1M images, while our features are only trained on around 10K images due

to the hardware limitation.

Table 4.6: Comparison with state-of-the-art techniques.

Method Feature dimension mAP
SDN 700 0.613
BoF 20K 0.404
FV 8192 0.495

VLAD 8192 0.526

As can be seen from the table, our SDN significantly outperform other state-

of-the-art techniques, which means that our feature representations that incorpo-

rate both global descriptors and local spatial information are more robust and

discriminative to describe scene images. In addition, the dimension of feature rep-

resentations learned from the proposed SDN is considerably lower than that of

other feature descriptors, which demonstrates that using our features to perform

content-based image retrieval can be much more e�cient than using those widely

used descriptors. Furthermore, using less training images shows that our discrimi-

native features can be obtained easily even when the training dataset is not large.

4.5 Conclusions

In this chapter, aiming to further improve baseline approach and multi-scale net-

works proposed in the last chapter, we have proposed a novel multi-level Spatial

Deep Network to learn compact but discriminative feature representations for scene

images. We exploit the spatial layout of the image and constrain the random patch

extraction to be conducted at di↵erent areas of the image to yield feature repre-

sentations that incorporate both global descriptors and spatial information.

4.5 Conclusions 67

By exploiting the spatial layout and limiting the random patch extraction to

being performed in di↵erent areas of the image, the proposed spatial deep networks

significantly outperform the baseline approach and the proposed multi-scale net-

works described in Chapter 3 that both utilize random patches extracted from arbi-

trary locations of the input image. Comparing to other state-of-the-art techniques,

our compact feature representations that incorporate both global descriptors and

local spatial information are competitive with features generated from CNN, BoF,

and SP on the OT dataset. When using the same feature dimensions as ours,

the performance of BoF and SP drop considerably which are much lower than the

performance of our methods.

In order to evaluate the robustness of our proposed SDN, we have implemented

it to content-based image retrieval task on the Holidays dataset that also focuses

on scene images. Compared to other state-of-the-art features, such as BoF, FV,

and VLAD, our features achieve much better retrieval performance but with much

lower feature dimensions.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, focusing on deep learning techniques, we aim to improve the

baseline approach described in [54,55] by further exploiting the stationary property

of images. We first propose a multi-scale network that leverages multiple random

patches and di↵erent patch dimensions to learn feature representations for images

instead of the method used in the baseline approach that uses only one random

patch extracted from each training image. Experiment results listed in Section 3.4.6

show that our proposed multi-scale networks significantly outperform the baseline

approach for outdoor scene classification on the OT dataset.

In order to further improve the baseline approach, in Section 4.1, we propose

a novel multi-level Spatial Deep Network to learn compact but discriminative fea-

ture representations for scene images. We exploit the spatial layout based on the

stationary property of images to learn feature representations that incorporate

both global descriptors and local spatial information. Inspired by Spatial Pyramid

scheme, SDN performs multi-level partitions and constrains the random patch se-

lection to be conducted at di↵erent areas of the image so as to e↵ectively restrict

the patches to hold the characteristics of di↵erent regions of that image. In terms of

experiment results on the OT dataset displayed in Section 4.3.4, SDN considerably

exceeds the baseline approach and the proposed multi-scale network that both use

random patches extracted from arbitrary locations of the image. It is also compet-

itive with other widely used classification techniques, such as CNN, BoF, and SP.

To evaluate the robustness of the proposed SDN, we also apply it to content-based

image retrieval on the Holidays dataset that focuses on scene images as well in

Section 4.4. Compared to other state-of-the-art features, such as BoF, FV, and

VLAD, our features learned from SDN achieve much better retrieval performance

68

5.2 Future Work 69

but using much lower feature dimensions.

Although the proposed methods achieve competitive performance on some scene

classification and content-based image retrieval datasets, there are still some lim-

itations of our approaches. One is that the robustness of our methods needs to

be further evaluated on some other commonly used scene datasets, including some

large-scale datasets. Besides, though the feature generating during the testing

phase is e�cient, the training procedures are relatively time-consuming due to the

complexity of the proposed SDN and a large number of parameters required to be

optimized. Thus, it would be good to further enhance the e�ciency by improv-

ing the structure of the proposed network. Moreover, after obtaining the feature

representations, the Manhattan or Euclidean distance is applied to measure the

di↵erence between two feature vectors, which can be further improved by utilizing

other more appropriate distance metrics.

5.2 Future Work

In this section, we outline a number of future research directions that arise from

the work presented in this dissertation.

Apply SDN to large-scale recognition tasks:

The proposed SDN is only applied to relatively small-scale recognition tasks,

such as outdoor scene classification and content-based image retrieval. However,

due to the e�ciency of feature generating processes and the compactness of learned

feature representations for scene images through SDN, it is worth investigating the

performance and capability when applying our proposed methods to large-scale

recognition tasks.

Apply SDN to content-based video retrieval:

With the exponential growth of available videos, along with increasing user

involvement in video-related activities, there is a huge demand for video retrieval

systems. Features extracted from videos play a significant role in content-based

video retrieval that is used for selecting, indexing and ranking videos in terms of

users’ potential interests. Similar to content-based image retrieval, good features

should have properties to allow the time and space involved in retrieval processes

to be reduced. Taken into account the advantages of features learned from SDN

that is based on the stationary property of images, it is of great benefit to further

exploit the stationary property in the video retrieval domain.

5.2 Future Work 70

Improve SDN by utilizing CNN scheme:

In recent years, CNN models have shown astonishing performance in many ar-

eas such as image classification and object detection. Currently, the proposed SDN

is based on the learning ability of stacked auto-encoders and the advantages of

convolutional processes. However, it would be good to investigate the possibility

to put SDN and state-of-the-art CNN models together, which means use the pa-

rameters learned from SDN to provide a reasonable initialization for CNN models

and then leverage the training processes of CNN to further enhance the learned

parameters.

References

[1] X. Meng, Z. Wang, and L. Wu, “Building global image features for scene

recognition,” Pattern Recognition, vol. 45, no. 1, pp. 373–380, 2012.

[2] N. M. Elfiky, J. Gonzàlez, and F. X. Roca, “Compact and adaptive spatial

pyramids for scene recognition,” Image and Vision Computing, vol. 30, no. 8,

pp. 492–500, 2012.

[3] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic

representation of the spatial envelope,” International journal of computer

vision, vol. 42, no. 3, pp. 145–175, 2001.

[4] Y. Kodrato↵ and R. S. Michalski, Machine learning: an artificial intelligence

approach. Morgan Kaufmann, 2014, vol. 3.

[5] Y. Bengio, “Deep learning of representations: Looking forward,” in Statistical

language and speech processing. Springer, 2013, pp. 1–37.

[6] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John Wiley

& Sons, 2012.

[7] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep

belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[8] A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. Xing, “Training hierarchical feed-

forward visual recognition models using transfer learning from pseudo-tasks,”

in Computer Vision–ECCV 2008. Springer, 2008, pp. 69–82.

[9] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep be-

lief networks for scalable unsupervised learning of hierarchical representa-

tions,” in Proceedings of the 26th Annual International Conference on Ma-

chine Learning. ACM, 2009, pp. 609–616.

71

References 72

[10] G. E. Hinton and R. Salakhutdinov, “Using deep belief nets to learn co-

variance kernels for gaussian processes,” in Advances in neural information

processing systems, 2008, pp. 1249–1256.

[11] R. Salakhutdinov and G. E. Hinton, “Learning a nonlinear embedding by

preserving class neighbourhood structure,” in International Conference on

Artificial Intelligence and Statistics, 2007, pp. 412–419.

[12] I. Levner and H. Zhang, “Classification-driven watershed segmentation,” Im-

age Processing, IEEE Transactions on, vol. 16, no. 5, pp. 1437–1445, 2007.

[13] M. Ranzato and M. Szummer, “Semi-supervised learning of compact docu-

ment representations with deep networks,” in Proceedings of the 25th inter-

national conference on Machine learning. ACM, 2008, pp. 792–799.

[14] R. Hadsell, A. Erkan, P. Sermanet, M. Sco�er, U. Muller, and Y. LeCun,

“Deep belief net learning in a long-range vision system for autonomous

o↵-road driving,” in Intelligent Robots and Systems, 2008. IROS 2008.

IEEE/RSJ International Conference on. IEEE, 2008, pp. 628–633.

[15] R. Collobert and J. Weston, “A unified architecture for natural language

processing: Deep neural networks with multitask learning,” in Proceedings

of the 25th international conference on Machine learning. ACM, 2008, pp.

160–167.

[16] A. Mnih and G. E. Hinton, “A scalable hierarchical distributed language

model,” in Advances in neural information processing systems, 2009, pp.

1081–1088.

[17] L. W. Renninger and J. Malik, “When is scene identification just texture

recognition?” Vision research, vol. 44, no. 19, pp. 2301–2311, 2004.

[18] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local descrip-

tors into a compact image representation,” in Computer Vision and Pattern

Recognition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 3304–

3311.

[19] A. Vailaya, M. A. Figueiredo, A. K. Jain, and H.-J. Zhang, “Image classifica-

tion for content-based indexing,” Image Processing, IEEE Transactions on,

vol. 10, no. 1, pp. 117–130, 2001.

References 73

[20] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to object

matching in videos,” in Computer Vision, 2003. Proceedings. Ninth IEEE

International Conference on. IEEE, 2003, pp. 1470–1477.

[21] C. Harris and M. Stephens, “A combined corner and edge detector.” in Alvey

vision conference, vol. 15. Manchester, UK, 1988, p. 50.

[22] D. G. Lowe, “Object recognition from local scale-invariant features,” in Com-

puter vision, 1999. The proceedings of the seventh IEEE international con-

ference on, vol. 2. Ieee, 1999, pp. 1150–1157.

[23] J. Fehr, A. Streicher, and H. Burkhardt, “A bag of features approach for

3d shape retrieval,” in Advances in Visual Computing. Springer, 2009, pp.

34–43.

[24] F. Jurie and B. Triggs, “Creating e�cient codebooks for visual recognition,”

in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference

on, vol. 1. IEEE, 2005, pp. 604–610.

[25] X. Yuan, J. Yu, Z. Qin, and T. Wan, “A sift-lbp image retrieval model based

on bag of features,” in IEEE International Conference on Image Processing,

2011.

[26] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,

vol. 20, no. 3, pp. 273–297, 1995.

[27] X.-H. Han, Y.-W. Chen, and X. Ruan, “Multilinear supervised neighborhood

embedding of a local descriptor tensor for scene/object recognition,” Image

Processing, IEEE Transactions on, vol. 21, no. 3, pp. 1314–1326, 2012.

[28] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial

pyramid matching for recognizing natural scene categories,” in Computer

Vision and Pattern Recognition, 2006 IEEE Computer Society Conference

on, vol. 2. IEEE, 2006, pp. 2169–2178.

[29] A. Bosch, A. Zisserman, and X. Muoz, “Scene classification using a hybrid

generative/discriminative approach,” Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, vol. 30, no. 4, pp. 712–727, 2008.

[30] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classifica-

tion with the fisher vector: Theory and practice,” International journal of

computer vision, vol. 105, no. 3, pp. 222–245, 2013.

References 74

[31] T. Jaakkola, D. Haussler et al., “Exploiting generative models in discrim-

inative classifiers,” Advances in neural information processing systems, pp.

487–493, 1999.

[32] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning deep

features for scene recognition using places database,” in Advances in Neural

Information Processing Systems, 2014, pp. 487–495.

[33] K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, and

Y. L. Cun, “Learning convolutional feature hierarchies for visual recognition,”

in Advances in neural information processing systems, 2010, pp. 1090–1098.

[34] J. Donahue, Y. Jia, O. Vinyals, J. Ho↵man, N. Zhang, E. Tzeng, and T. Dar-

rell, “Decaf: A deep convolutional activation feature for generic visual recog-

nition,” arXiv preprint arXiv:1310.1531, 2013.

[35] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical

invariant spatio-temporal features for action recognition with independent

subspace analysis,” in Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on. IEEE, 2011, pp. 3361–3368.

[36] X. Ren and D. Ramanan, “Histograms of sparse codes for object detection,”

in Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Confer-

ence on. IEEE, 2013, pp. 3246–3253.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha↵ner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[38] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp.

248–255.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, 2012, pp. 1097–1105.

[40] I. Arel, D. C. Rose, and T. P. Karnowski, “Deep machine learning-a new fron-

tier in artificial intelligence research,” Computational Intelligence Magazine,

IEEE, vol. 5, no. 4, pp. 13–18, 2010.

References 75

[41] T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, and T. Poggio,

“A quantitative theory of immediate visual recognition,” Progress in brain

research, vol. 165, pp. 33–56, 2007.

[42] Y. Bengio, “Learning deep architectures for ai,” Foundations and trends R�
in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[43] P. E. Utgo↵ and D. J. Stracuzzi, “Many-layered learning,” Neural Computa-

tion, vol. 14, no. 10, pp. 2497–2529, 2002.

[44] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[45] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Ben-

gio, “Why does unsupervised pre-training help deep learning?” The Journal

of Machine Learning Research, vol. 11, pp. 625–660, 2010.

[46] M. Ranzato, F. J. Huang, Y.-L. Boureau, and Y. LeCun, “Unsupervised

learning of invariant feature hierarchies with applications to object recogni-

tion,” in Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE

Conference on. IEEE, 2007, pp. 1–8.

[47] G. Hinton, “Training products of experts by minimizing contrastive diver-

gence,” Neural computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[48] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy layer-

wise training of deep networks,” Advances in neural information processing

systems, vol. 19, p. 153, 2007.

[49] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in Computer Vi-

sion and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE,

2014, pp. 580–587.

[50] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,

“Overfeat: Integrated recognition, localization and detection using convolu-

tional networks,” arXiv preprint arXiv:1312.6229, 2013.

[51] A. Berg, J. Deng, and F.-F. Li, “Imagenet large scale visual recognition

challenge 2010,” 2010.

References 76

[52] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional

auto-encoders for hierarchical feature extraction,” in Artificial Neural Net-

works and Machine Learning–ICANN 2011. Springer, 2011, pp. 52–59.

[53] D. J. Field, “Wavelets, vision and the statistics of natural scenes,” Philosoph-

ical Transactions of the Royal Society of London. Series A: Mathematical,

Physical and Engineering Sciences, vol. 357, no. 1760, pp. 2527–2542, 1999.

[54] A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, and C. Suen. (2010) Feature extraction

using convolution. [Online]. Available: http://ufldl.stanford.edu/tutorial/

[55] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer networks in

unsupervised feature learning,” in International conference on artificial in-

telligence and statistics, 2011, pp. 215–223.

[56] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep

convolutional networks for visual recognition,” in Computer Vision–ECCV

2014. Springer, 2014, pp. 346–361.

[57] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, vol. 72, 2011.

[58] M. Längkvist, L. Karlsson, and A. Loutfi, “A review of unsupervised feature

learning and deep learning for time-series modeling,” Pattern Recognition

Letters, vol. 42, pp. 11–24, 2014.

[59] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review

and new perspectives,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 35, no. 8, pp. 1798–1828, 2013.

[60] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

by back-propagating errors,” Cognitive modeling, vol. 5, 1988.

[61] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural codes for

image retrieval,” in Computer Vision–ECCV 2014. Springer, 2014, pp. 584–

599.

[62] Y. Chen, Z. Cui, and J. Zeng, “Structural optimization of lennard-jones clus-

ters by hybrid social cognitive optimization algorithm,” in Cognitive Infor-

matics (ICCI), 2010 9th IEEE International Conference on. IEEE, 2010,

pp. 204–208.

References 77

[63] Y. Tsuruoka, J. Tsujii, and S. Ananiadou, “Stochastic gradient descent train-

ing for l1-regularized log-linear models with cumulative penalty,” in Proceed-

ings of the Joint Conference of the 47th Annual Meeting of the ACL and the

4th International Joint Conference on Natural Language Processing of the

AFNLP: Volume 1-Volume 1. Association for Computational Linguistics,

2009, pp. 477–485.

[64] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng,

“On optimization methods for deep learning,” in Proceedings of the 28th

International Conference on Machine Learning (ICML-11), 2011, pp. 265–

272.

[65] C. M. Bishop et al., Pattern recognition and machine learning. springer New

York, 2006, vol. 4, no. 4.

[66] G. McLachlan, Discriminant analysis and statistical pattern recognition.

John Wiley & Sons, 2004, vol. 544.

[67] J. D. Rennie, L. Shih, J. Teevan, D. R. Karger et al., “Tackling the poor

assumptions of naive bayes text classifiers,” in ICML, vol. 3. Washington

DC), 2003, pp. 616–623.

[68] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted boltzmann machines

for collaborative filtering,” in Proceedings of the 24th international conference

on Machine learning. ACM, 2007, pp. 791–798.

[69] T. Cover and P. Hart, “Nearest neighbor pattern classification,” Information

Theory, IEEE Transactions on, vol. 13, no. 1, pp. 21–27, 1967.

[70] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recogni-

tion using shape contexts,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 24, no. 4, pp. 509–522, 2002.

[71] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning for

large margin nearest neighbor classification,” in Advances in neural informa-

tion processing systems, 2005, pp. 1473–1480.

[72] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” In-

ternational journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[73] H. Jégou, M. Douze, and C. Schmid, “Exploiting descriptor distances for

precise image search,” Research report, INRIA Rennes, 2011.

References 78

[74] N. Christiannini and J. Shawe-Taylor, “Support vector machines and other

kernel-based learning methods,” 2000.

[75] S.-i. Amari and S. Wu, “Improving support vector machine classifiers by

modifying kernel functions,” Neural Networks, vol. 12, no. 6, pp. 783–789,

1999.

[76] F. Girosi, “An equivalence between sparse approximation and support vector

machines,” Neural computation, vol. 10, no. 6, pp. 1455–1480, 1998.

[77] J. A. Suykens and J. Vandewalle, “Least squares support vector machine

classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[78] C. J. Burges, “A tutorial on support vector machines for pattern recognition,”

Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998.

[79] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for

optimal margin classifiers,” in Proceedings of the fifth annual workshop on

Computational learning theory. ACM, 1992, pp. 144–152.

[80] A. J. Smola, B. Schölkopf, and K.-R. Müller, “The connection between reg-

ularization operators and support vector kernels,” Neural networks, vol. 11,

no. 4, pp. 637–649, 1998.

[81] B. Schölkopf, K.-K. Sung, C. J. Burges, F. Girosi, P. Niyogi, T. Poggio, and

V. Vapnik, “Comparing support vector machines with gaussian kernels to

radial basis function classifiers,” Signal Processing, IEEE Transactions on,

vol. 45, no. 11, pp. 2758–2765, 1997.

[82] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, “The

di�culty of training deep architectures and the e↵ect of unsupervised pre-

training,” in International Conference on artificial intelligence and statistics,

2009, pp. 153–160.

[83] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” in Proceedings of

the 25th international conference on Machine learning. ACM, 2008, pp.

1096–1103.

[84] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An em-

pirical evaluation of deep architectures on problems with many factors of

variation,” in Proceedings of the 24th international conference on Machine

learning. ACM, 2007, pp. 473–480.

References 79

[85] K. Fukushima, “Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition una↵ected by shift in position,” Biological

cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[86] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap

to human-level performance in face verification,” in Computer Vision and

Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014, pp.

1701–1708.

[87] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical

features for scene labeling,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 35, no. 8, pp. 1915–1929, 2013.

[88] J. Bouvrie, “Notes on convolutional neural networks,” Technical Report, 2006.

[89] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations

in convolutional architectures for object recognition,” in Artificial Neural

Networks–ICANN 2010. Springer, 2010, pp. 92–101.

[90] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-

dinov, “Improving neural networks by preventing co-adaptation of feature

detectors,” arXiv preprint arXiv:1207.0580, 2012.

[91] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization of

neural networks using dropconnect,” in Proceedings of the 30th International

Conference on Machine Learning (ICML-13), 2013, pp. 1058–1066.

[92] D. Vasiliu, T. Dey, and I. Dryden, “Penalized euclidean distance regression,”

arXiv preprint arXiv:1405.4578, 2014.

[93] I. Jolli↵e, Principal component analysis. Wiley Online Library, 2002.

[94] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny

images,” 2009.

[95] J. Tighe and S. Lazebnik, “Superparsing: scalable nonparametric image pars-

ing with superpixels,” in Computer Vision–ECCV 2010. Springer, 2010, pp.

352–365.

[96] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak geo-

metric consistency for large scale image search,” in Computer Vision–ECCV

2008. Springer, 2008, pp. 304–317.

References 80

[97] X. Cui, V. Goel, and B. Kingsbury, “Data augmentation for deep neu-

ral network acoustic modeling,” in Acoustics, Speech and Signal Processing

(ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp. 5582–

5586.

[98] F. S. Khan, R. M. Anwer, J. van de Weijer, A. D. Bagdanov, M. Vanrell, and

A. M. Lopez, “Color attributes for object detection,” in Computer Vision

and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,

pp. 3306–3313.

[99] M. Nixon, Feature extraction & image processing. Academic Press, 2008.

[100] M. M. Deza and E. Deza, Encyclopedia of distances. Springer, 2009.

[101] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances in

neural information processing systems, 2009, pp. 1753–1760.

